
ALGORITHMS AND COMPLEXITY THEORY

Chapter 3: Sorting Algorithms

Jules-R Tapamo

COMPUTER SCIENCE- DURBAN - FEBRUARY 2010

Contents
1 Introduction 3

2 Selection Sort 3
2.1 Principles . 3

3 Bubble Sort 4
3.1 Principles . 4
3.2 Algorithm . 4

4 Insertion Sort 5
4.1 Sequential insertion Sort . 5

4.1.1 Algorithm . 5
4.2 binary insertion sort . 6

4.2.1 principles . 6
4.2.2 Algorithm . 6
4.2.3 Complexity . 7

4.3 Comments on Insertion sort . 8

5 Shell Sort 9
5.1 Principles . 9
5.2 Comments on Shellsort . 10

6 TreeSort 10
6.1 Principles . 10
6.2 Pseudo-code of Tree sort . 11

7 Quicksort 12
7.1 Naive Algorithm . 13
7.2 Quicksort analysis . 13
7.3 Quicksort complexity . 14

7.3.1 Average Case Analysis of QuickSort . 14
7.3.2 Worst Case Analysis of Quicksort . 15

2 CONTENTS

8 MergeSort 17
8.1 Analysis . 17
8.2 algorithm . 17

9 Radix Sort 18
9.1 Bucket Sort . 18
9.2 Radix sort . 19

10 External Sort 19

3

1 Introduction
More often programming problems include sorting procedures. We will in this part of the course, study
sorting algorithms from the simplest to the more sophisticated ones.

2 Selection Sort
2.1 Principles

We want to sort n elements store in an array. Simple sorting algorithms are those which start by looking
within the array, the smallest element, and then swap it with the one in the first position, then find the
element with the second smallest value and swap it with the element in the second position in the array,
and then continue until the (n−1)th element is processed. We will then obtain a sorted array. This method
is called selection sort.

EXAMPLE 2.1.1
W e want to sort the following array in ascending order:
L I C E N C E

We will have the following sequence of execution

L I C E N C E gives C I L E N C E

C I L E N C E gives C C L E N I E

C C L E N I E gives C C E L N I E

C C E L N I E gives C C E E N I L

C C E E N I L gives C C E E I N L

C C E E I N L gives C C E E I L N

In this version of selection sort algorithm, to search the smallest element of the array to be sorted , we
will compare elements between them and will only record the index of the smallest element, and when
this element is found, swap it using its index. The pseudo-code of the algorithm is :

SelectionSort(int[] t, int n)
1: begin
2: int i,j,min,q
3: for i = 1 to n-1 do
4: min = i
5: for j = i+1 TO n do
6: if t[j] < t[min] then
7: min = j
8: end if
9: end for

10: q = t[min]
11: t[min]= t[i]
12: t[i] = q
13: end for

The maximum running time of this algorithm is O(n2). Indeed for a given i n -i comparisons(c) are done,

4 3 BUBBLE SORT

at least four assignments (a) and at most five are done, and one addition(o) is done. In total we have

(n− 1) + (n− 2) + (n− 3) + ... + 1 = n(n−1)
2

comparisons,

at least 4(n− 1) assignments, at most 5(n− 1) additions, thus the maximum running time is

Tmax(n) =n(n−1)
2

c+5(n-1)a+no = n2

2
c+ (−c+10a+2o)n

2
−5a = Θ(n2)

3 Bubble Sort
3.1 Principles

For the bubble sort we think recursively. Given an array of n elements, place the biggest element at the
end. And then apply recursively the algorithm to the n− 1 first elements, if n > 1. The greatest element
is remounted at the end of the array as follows : assuming that the element with index k is the greatest of
the k first elements of the array, the property to hold for k+1 we have :

• if the (k + 1)th element is the greatest then there is nothing to do.

• else swap kth and (k + 1)th elements.

EXAMPLE 3.1.1
W e want to sort the list C K G L B

step array operation Resulting array
1rst C K G L B No change C K G L B

C K G L B K > G , swap K and G C G K L B
C G K L B No change C G K L B
C G K L B L > B , swap L and B C G K B L

2nd C G K B L No change C G K B L
C G K B L No Change C G K B L
C G K B L K > B , swap K and B C G B K L

3rd C G B K L No change C G B K L
C G B K L G > B , swap G and B C B G K L

4th C B G K L C > B , swap C and B B C G K L
B C G K L end

The name bubble sort is given to this strategy of sort because if we visualize the process of sorting , the
greatest element remounts towards the end of the array like air bubbles that remount at the water surface.

3.2 Algorithm

The pseudo-code of the algorithm can be specify as follows:

5

BUBBLESORT(int [] t, int
n)

int i,j,p
for i = n downto 2 do

for j = 1 to i-1 do
if t[j] > t[j + 1] then

p= t[j]
t[j]= t[j+1]
t[j+1]= p

end if
end for

end for
By applying the same method as in the selection sort it is easy to prove that the complexity of bubble sort
is O(n2)

Bubble sort is an illustration of the mathematical property that says: ” All permutation can be written as
a product of of transpositions of two consecutive elements”.

4 Insertion Sort
Insertion sort is the natural method used when we want to sort the elements of a list as we are entered
them. If the k first element are already sorted, We will then need to place the (k + 1)th element, We will
then have to :

1. Determine its place amongst the (k + 1) elements

2. Do the necessary shifting for its placement;

4.1 Sequential insertion Sort

Here we will assume that we have an array of integers. Those elements are read and inserted one after
another in the array of the preceding elements already sorted.
4.1.1 Algorithm

We can easily derive the following pseudo-code

SEQINSERTIONSORT(int [] t ,int n)
1: int i,j,q
2: for i = 2 to n do
3: j = i
4: q = t[i]
5: while ((j>1) and (t[j-1] > q) do
6: t[j] = t[j-1]
7: j := j - 1
8: end while
9: t[j] = q

10: end for
Using the same method as in the selection sort it is shown that the complexity of sequential selection sort
is algorithm is Θ(n2).

6 4 INSERTION SORT

EXAMPLE 4.1.1
W e want to sort the following list: C K G A B
step array Operation resulting array
1rst C K G A B Initialization, No Change C K G A B

C K G A B
2nd C K G A B Save the value(K) at the 2nd position

Compare K to C, No change C K G A B
C K G A B

3rd C K G A B Save the value(G) at the 3rd position
Compare G to K, Move K to the right C K K A B

C K K A B compare G to C, No change C K K A B
C K K A B insert G at the second position C G K A B
C G K A B

4th C G K A B Save the value(A) at the 4th position
compare A to K, move K to the right C G K K B

C G K K B compare A to G, move G to the right C G G K B
C G G K B compare A to C, move C to the right C C G K B
C C G K B insert A at the first position A C G K B
A C G K B

5th A C G K B Save the value(A) at the 5th position
compare B and K, move K to the right A C G K K

A C G K K compare B to G, move G to the right A C G G K
A C G G K compare B to C, move C to the right A C C G K
A C C G K compare B to A, No change A C C G K
A C C G K insert B at the second position A B C G K
A B C G K

4.2 binary insertion sort

To speed up the search of the position where to insert the element in the sorted part of the array, binary
search will be used.
4.2.1 principles

The algorithm consist of : given an array t , if the k first elements are already sorted, use the binary method
to search the place of the (k + 1)th element .
4.2.2 Algorithm

word represents the element to be placed
istart and iend delimit the zone of the array within which word will be placed. The following algorithm
will search where to insert word.

4.2 binary insertion sort 7

int BinarySearh (int [] t, int word ,int istart ,int iend)
1: int j,k,position
2: position = istart; j = iend
3: while j > position do
4: k = (position+j)/ 2
5: if word ≤ t[k] then
6: j = k
7: else
8: position = k + 1
9: end if

10: end while
11: if (word > t[position]) then
12: position = position + 1
13: end if
14: return (position)

Binary sequential sort can then be performed using the following pseudo-code:

BinarySort (int [] t, int n)
1: int i,j,word,pos
2: for i = 2 to n do
3: word = t[i]
4: pos = BinarySearch(t,word,1,i-1)
5: for j=i downto pos+ 1 do
6: t[j] = t[j-1]
7: end for
8: t[pos]=word
9: end for

4.2.3 Complexity

In the binary search, intervals are split until the place to insert word is found. Assuming that we will do
m iterations to find the position of word, we then have:
2m−1 ≤ n− 1 < 2m then m = log2(n-1) if n is the number of elements in the array.
The execution time of the binary sort algorithm is then:

T(n) =
n∑

i=2

(A + Blog2(i− 1) + C + α(i))

where α(i) is the time used to place a new element in the array. There are three possible cases:

1. Worst Case
α(i) = (i − 1)(e + a) + a where a is the cost of an arithmetic operation and e the cost of an
assignment. Then

T(n) =
n∑

i=2

(A1i + Blog2(i− 1) + C1)

but log2i < i then T (n) ≤
n∑

i=2

(A1i + B(i− 1) + C1) =
n∑

i=2

(A2i + B2)

T(n) ≤ A2(n− 1)−B2 + A2
n(n+1)

2

d’o T(n) = O(n2).

8 4 INSERTION SORT

2. Best case
α(i) = 0

T(n) =
n∑

i=2

(A + Blog2(i− 1)) =
n−1∑
i=1

(A + Blog2(i))

T(n)=A(n− 1) + B

n∑
i=1

log2(i) = A(n− 1) + Blog2(
n−1∏
i=1

i)

but n! =
√

2πn(e
n

n[1 + O(1
n
)]

then T (n) = O(n log n).

3. Average Case

T (n) =
n∑

i=2

(A + Blog2(i− 1) + C + α(i))

the average of α(i) is computed as follows:
We have :
0, 1, 2 , 3, . . . i-1 displacements and by summing we have i(i−1)

2
, as we have i type of displacements

(from 0 to i-1) the average is αm(i) = i(i−1)
2i

= i−1
2

T(n) =
n∑

i=2

(A + Blog2(i− 1) + C + D
i− 1

2
)

as log2n < n alors
T(n) = O(n2)

4.3 Comments on Insertion sort

Insertion sort is good middle-of-the-road choice for sorting lists of few thousand items or less. The
insertion sort is over twice as fast as the bubble sort and almost 40% faster than the selection sort.

9

EXAMPLE 4.3.2
W e want to use binary insertion sort to sort the following array
C K G A B

(1) A single element C is already sorted

(2) We will then try to insert K in the array which consists of a single el-
ement C, as K is greater than C , we will then have the array C K as
result, this will be done after one comparison , to know if we will insert
K before or after C.

(3) We want then to insert G in the array C K ; instead of trying to find the
place where to insert from C, we will

– split the array into two parts C and K ,
– compare G to C , as G is greater to C , G can only be inserted in the

second part of the list, which consists of a single element K which
is greater than G ,

– then G will be inserted between C and K, which results in the array
C G K.

(4) We then have to insert A in the array C G K:

– split C G K into two parts C G and K,
– compare A to the last element (G) of C G, as G is greater than A,

we will then recursively , using the same method, search for the
position where to insert A in C G. split the list into two parts C and
G , compare A to C , as A is smaller than C , A will be inserted in
the first part of the array, which consists of a single element C (and
C is greater than A) , means A will be inserted at the beginning of
the array C G, which gives to the array A C G.

– We will then have at this step the list A C G K

(5) We then have to insert B in the array A C G K:

– split A C G K into two parts A C and G K,
– compare B to the last element (C) of A C, as C is greater than B, we

will then recursively , search for the position where to insert B in A
C. split the array into two parts A and C , compare B to A, as B is
greater than A , B will be inserted between A and C, which gives
the array A B C.

– We will then have as result the array A B C G K

5 Shell Sort
5.1 Principles

We want to sort an array into increasing order. The idea is to reorganize it in such a way that we obtain
a sub-array sorted when selecting hth elements. Such an array is said to be h-ordered and is formed by
sub-arrays sorted independently. Elements will be inserted in the sub-arrays containing the elements i-h,
i-2h, i-3h, etc. where h is constant and positive. We then obtain an array in which the ’h’ disjoint series

10 6 TREESORT

of elements distant of h are sorted separately: it is not sufficient to sort separately the h series to obtain a
sorted list: we have to recommence for h′ < h. The shell sort algorithm performs the sorting by series of
distance hi , then hi−1,..., then h1, where the hi,...,h1 form a decreasing sequence with h1 = 1. For huge
array the tests results show that it is preferable to choose the sequence hi such that hi+1 = 3hi + 1, it means
it contains the incremental order: ..., 364, 121, 40,13,4,1 ; Then the algorithm will start from hm−2, where
m is the smallest integer such that hm ≥ n.
The pseudo-code of the algorithm is the following:

ShellSort (int [] t, int n)
1: int i,j,h,v
2: h=1
3: while (h < n/9) do
4: h = 3*h +1
5: end while
6: while (h>0) do
7: i=h+1
8: while (i<n) do
9: v =t[i];j = i

10: while (j>h) and t[j-h] >v do
11: t[j] =t[j-h]; j = j-h
12: end while
13: t[j] = v; i =i+1
14: end while
15: h=h/3
16: end while

It is shown that in the Shell sort the number of comparisons cannot exceed
N

3
2 with the sequence:. . .,364,121,40,13,4,1.

5.2 Comments on Shellsort

Efficient for medium-size lists, The Shellsort algorithm is by far the fastest of the n2 class sorting algo-
rithm. It is more than 5 times faster than bubble sort and little over twice as fast as sequential insertion
sort.

6 TreeSort
6.1 Principles

Given an array t , the tree sorting is performed as follows :

1. Build a binary tree such that the label of each node is an element of the array t, and for each node
,n, of this tree , labels of all nodes of the left subtree are less than the label of n , and labels of the
nodes of the right subtree are greater or equal to the label of n.

2. Traverse the tree constructed at 1 in the order Left-root-right(symmetric or infix) and record the
label of the node at each traversal.

6.2 Pseudo-code of Tree sort 11

EXAMPLE 6.1.3
W e want to sort the following list : -4 2 3 -1 3 1 2

We will represent a binary tree by

Binary tree is

∅(empty set) if the tree is empty
(R, LT,RT) otherwise (where R is the root

and LT (left subtree)
and RT (light tree) are also binary trees.

)

step 1: Building of the tree
value tree

-4 (-4,∅,∅)
2 (-4,∅,(2,∅,∅))
3 (-4,∅,(2,∅,(3,∅,∅)))
-1 (-4,∅,(2,(-1,∅,∅),(3,∅,∅)))
3 (-4,∅,(2,(-1,∅,∅),(3,∅,(3,∅,∅))))
1 (-4,∅,(2,(-1,∅,(1,∅,∅)),(3,∅,(3,∅,∅))))
2 (-4,∅,(2,(-1,∅,(1,∅,∅)),(3,∅,(2,∅,∅),(3,∅,∅))))

step 2:
Symmetric tree traversal of the tree built at step1 gives the following result :
step list

1 -4
2 -4 -1
3 -4 -1 1
4 -4 -1 1 2
5 -4 -1 1 2 2
6 -4 -1 1 2 2 3
7 -4 -1 1 2 2 3 3

6.2 Pseudo-code of Tree sort

The pseudo-code of tree sort is specify as follows:
Consider that the binary has the following type

struct bintree
{
bintree lt
int label
bintree rt

}

We want to sort the array t which contains n elements , The pseudo-code of the tree sorting is:

binsort(int [] t, int n)
1: bintree bint
2: bint = binTreeConst(t,n)
3: Infix(bint)

12 7 QUICKSORT

The procedure binTreeConst constructing the binary is specified as follows :

bintree binTreeConst(int [] t, int n)
1: int i
2: bintree bint
3: insert(bint,T[1])
4: for i = 2 to n do
5: insert(bint,T[i])
6: end for
7: return bint

The procedure insert will insert the elements as they are read from the array t. If the element to be inserted
is word and t represents the binary tree where to insert, the insertion is specified as follows:

Insert(bintree t, int word)
1: if t = nil then
2: t= construct(word,nil,nil)
3: else
4: if word < t.label then
5: Insert(t.lt,word)
6: else
7: Insert(t.rt,word)
8: end if
9: end if

construct(r,t1,t2) constructs a binary tree with root labelled r and with t1 as a left subtree and t2 as a right
subtree.

The pseudo-code of symmetric (infix) traversal is:

Infix(bintree t)
1: if t 6= nil then
2: Infix(t.lt)
3: display(T.label)
4: Infix(t.rt)
5: end if

Exercise: Analyze the temporal complexity of tree sort.

7 Quicksort
Quicksort is popular for three reasons

• It is easy to implement

• It is general purpose sort

• Most of the time it requires least resources.

We will first define a naive version of quicksort.

7.1 Naive Algorithm 13

7.1 Naive Algorithm

Quicksort algorithm is based on the divide-and-conquer method. It first partition the array to sort into two
parts and then sort independently those parts, The naive version can be specified as follows:

NaiveQuickSort(int [] t, int l, int r)
1: if (r>l) then
2: i=PARTITION(l,r)
3: NaiveQuickSort(t,l,i-1)
4: NaiveQuickSort(t,i+1,r)
5: end if

Here l and r represent lower bound and upper bound of the sorting interval.

7.2 Quicksort analysis

The core part of the method is the procedure of partitioning which organizes the array according to the
following conditions:

1. There exists an index i such that the element t[i] is at its final position ;

2. All the elements t[l],...,t[i-1] are less or equal to t[i];

3. All the elements t[i+1],...,t[r] are greater or equal to t[i].

The following simple and general strategy is used: choose the first element arbitrary t[r] as element ”pivot”
to place in its final position . After that, traverse the array from the left , until an element greater than t[r]
is found and traverse the array from the right until an element less than t[r] is found . The two elements
which have stopped the traversal are not in their right place in the partitioning and are then swop. Continue
the process until the t[r] is at the position such that all the element preceding it are less or equal and all
those following it are greater or equal.
The pseudo-code of quicksort can be specify as follows:

14 7 QUICKSORT

QuickSort(int [] t, int l, int r)
1: int i,j,u,v
2: boolean utile
3: begin
4: if (r>l) then
5: v=t[r];i= l-1;j=r
6: utile = true
7: while utile do
8: i=i+1
9: while (i <= r) and (t[i] < v) do

10: i=i+1
11: end while
12: j=j-1
13: while (j >= l) and (t[j] > v) do
14: j=j-1
15: end while
16: if i>=j then
17: utile=false
18: else
19: u = t[i]
20: t[i]=t[j]
21: t[j]=u
22: end if
23: end while
24: u=t[i];t[i]=t[r];t[r]=u
25: QuickSort(t,l,i-1) ;
26: QuickSort(t,i+1,r)
27: end if

7.3 Quicksort complexity

7.3.1 Average Case Analysis of QuickSort

Assume that all the keys are distinct and that all permutations are equally probable. The recurrence
relation verify by the number of comparisons Cn is the following:
Cn = n + 1 + 1

n

∑n
k=1(Ck−1 + Cn−k) n ≥ 2

where C1 = C0 = 0
we have n + 1 comparisons of pivot with each of other elements, and each element k has probability 1

n
to

be chosen as a pivot, and then we will have two sub-arrays with sizes k − 1 and n − k respectively, We
will then have have arrays of sizes k − 1 and n− k to be sorted.
We have C1 + C2 + ... + Cn−1 = Cn−1 + Cn−2 + ... + C1 thus Cn = n + 1 + 2

n

∑n
k=1 Ck−1

we have following equality nCn − (n− 1)Cn−1 = n(n + 1)− (n− 1)n + 2Cn−1

which gives nCn = (n + 1)Cn−1 + 2n thus
Cn

n+1
= Cn−1

n
+ 1

n+1
= Cn−2

n−1
+ 2

n
+ 2

n+1
= ... = C2

3
+

∑n
k=3

2
k+1

then Cn

n+1
= 2

∑n
k=1

1
k

=
∫ n

1
1
x
dx = 2Ln(n)

Cn = 2(n+1)Ln(n). We can then conclude that Cn = O(nLn(n)) and the running time of the Quicksort
in the average case is an O(nLn(n))

7.3 Quicksort complexity 15

7.3.2 Worst Case Analysis of Quicksort
The partition process working on an array t with k elements performs k + 1 comparisons.
If t[r] is the largest element, we will then have two array to sort in the further step, one empty (elements
greater than t[r]) and another one with k − 1 elements.
Means if at each time we have to perform the partition, t[r] is largest element the total number of compar-
isons is:

Cn =
n∑

k=1

(k + 1) =
(n + 1)(n + 2)

2
= Θ(n2)

16 7 QUICKSORT

EXAMPLE 7.3.4
U sing QuickSort to sort the list 6 3 1 2 4 5 we have the following steps:

1. At this stage r = 6 , l = 1 means we
have r > l we will then have
v = t[r] = 5(the pivot), i = l-1 = 0, j = r = 6.
utile = true.
increment i
from the current value of i(=1) (incrementing at each step) find the i such
that t[i] >= v or i > r , it will be i = 1
decrement j
from the current value of j(=5) (decrementing at each step) find the j
such that t[j] <= v or j < l , it will be j = 5
because i < j, swap the contents of t[i] and t[j]
and we have as result, the list 4 3 1 2 6 5
utile still true
increment i
from the current value of i(=2) (incrementing at each step) find the i such
that t[i] >= v or i > r , it will be i = 5
decrement j
from the current value of j(=4) (decrementing at each step) find the j
such that t[j] <= v or j < l , it will be j = 4
because i > j, utile will become false and the contents of t[i] and t[r]
will be swop. The result is 4 3 1 2 5 6 . 5 is then at its final position.
We then have to sort in place 4 3 1 2 and 6

2. the pivot here is 2, i = 1 (t[i]= 4) will stop the traversal left-right and j
= 3(t[j]= 1) will stop the traversal (right-left) , then swap the contents
of t[1] and t[3], the result is the list 1 3 4 2, i = 2 will stop the traversal
(left-right) and j =1 will stop the traversal (right-left). Because i > j,
utile will become false and the contents of t[2] and t[4] will be swop.
The result is 1 2 4 3 . 2 is then at its final position. We then have to sort
at this step 1 and 4 3

2.1 1 is in final position because it is reduce to a single element , with
consequence that l = r.

2.2 for the list 4 3 the pivot is 3 , i = 3 and j = 3 will stop the traversals.
because i = j utile will become false and the contents of t[3] and
t[4] will be swop The result is 3 4. 3 is then at its final position. 4
is in its final position because it is reduce to a single element , with
consequence that l = r.

the result of this step is the sub-list : 1 2 3 4

3. 6 is in final position because it is reduce to a single element , with con-
sequence that l = r.

4. result: the sorted list is 1 2 3 4 5 6

17

8 MergeSort
8.1 Analysis

Given an array t with size n. We want to sort t in increasing order. MergeSort is a divide-and-conquer
approach which consists of :

• division the array into two parts as equal as possible, t1 and t2

• sort t1 and t2 recursively

• and merge them

The base case of the the recursion is the size of the sub array to be sorted, if it is less than a chosen
threshold , then use the insertion sort to preform the sort.

8.2 algorithm

Let t be the array to be sorted and n its size, the algorithm is specify as follows:

MergeSort(int []t, int n)
1: int [] U
2: int [] V
3: int i,j,l
4: begin
5: if n ≤ threshold then
6: InsertionSort(t,n)
7: else
8: j = (1+n)/ 2; i = n - j
9: for l = 1 to j do

10: U[l] = t[l]
11: end for
12: for l = j +1 to n do
13: V[l-j] = t[l]
14: end for
15: MergeSort(u,j)
16: MergeSort(v,i)
17: Merge(u,v,t,j,i)
18: end if

InsertionSort is insertion sort algorithm, Merge(u,v,t,i,j) merges two arrays U and V with sizes j and i
respectively in the array t , threshold is size , of t, below which MergeSort is useless.

Complexity of the algorithm
- The splitting of array consumes a linear time O(n)
- The merger consumes a linear time O(n)
If t(n) is the execution time of MergeSort(t,n) we will then have:
t(n) = 2t([n

2
]) + O(n)

We can then conclude using master theorem (see chapter on Design Methods) one that t(n) = O(n log n).
Mergesort is a fast algorithm and need more memory to be performed.

18 9 RADIX SORT

EXAMPLE 8.2.1
U sing MergeSort to sort the list 6 3 1 2 4 5 we have the following steps:

1. Split the list : we have two sub-lists 6 3 1 and 2 4 5

2. Apply MergeSort to 6 3 1

2.1 Split the list : we have the sub-lists 6 and 3 1
2.2 Apply MergeSort to 6 which is a single element , then it is sorted
2.3 Apply MergeSort to 3 1, we can just swap the two element to obtain

the sorted pair 1 3
2.4 Merge 6 and 1 3 , we obtain 1 3 6

3. Apply Merge sort to 2 4 5

2.1 Split the list : we have the sub-lists 2 and 4 5
2.2 Apply MergeSort to 2 which is a single element , then it is sorted
2.3 Apply MergeSort to 4 5, the pair is sorted .
2.4 Merge 2 and 4 5 , we obtain 2 4 5

4. Merge 1 3 6 and 2 4 5 and the result is 1 2 3 4 5 6

9 Radix Sort
Radix sort belongs to the class of bucket sort algorithms. We will first study the bucket sort algorithms.

9.1 Bucket Sort

Assuming that elements to be sorted consist of d digits, represented in radix k. If the radix is 2 then each
number will be represented in binary. d has to be a constant. d and k are parameters to the algorithm and
will affect the running time.
A bucket sort runs according to the following principle:

1. Distribute the elements over a number of buckets.The number of buckets is equal to the radix k.
Elements are distributed by examining a particular field from each element.
The running time of the distribution is Θ(n).

2. Sort the elements in each bucket. If there are ni elements in the bucket i, any sorting algorithm
can be used to sort the ni elements. If QuickSort is used the number of comparisons is S(ni) =
O(ni log ni).

Over all the k buckets we will have
∑k

i=1 S(ni) comparisons.

3. Combine the k buckets . This combination is an O(n).

We Assume that the elements are uniformly distributed in the bucket, means there are n
k

elements in each
bucket. The running time will be computed as follows:

• Sorting in bucket consumes T2(n) =
k∑

i=1

a
n

k
log(

n

k
) = k(a

n

k
log

n

k
)an log

n

k
= O(n log

n

k
)

• The three steps of bucket sort will consume T (n) = O(n) + O(n log n
k
) + O(n) = O(n log n

k
) .

Considering the d digits, we then have the overall running time being O(dn log n
k
) = O(n log n

k
) as

9.2 Radix sort 19

d is constant.
If k = O(n) , for instance k = n

10
, the running is O(n log 10) = O(n).

9.2 Radix sort

The principle of radix sort is as follows:

1. Allocate k buckets; Set p = rightmost digit

2. Distribute the elements from array into the buckets considering the p digit. In other words allocate
to i bucket all the elements for which p digit is i.

3. Combine the elements from the buckets into array, with the elements in the bucket i preceding the
elements in the buckets i + 1, for k = 1, 2, . . . , k − 1

4. p = p-1; if p ≥ 1, goto step 2

Note that the relative order of two elements placed in the same bucket is not changed.

EXAMPLE 9.2.1
U se radix sort to sort the following decimal numbers: 170, 045, 075, 090,
002, 024, 802, 065 .
The radix here is k = 10 and the number of digits is d = 3
The steps of the radix sort are

1. Sorting by least significant digit gives:
170 , 090︸ ︷︷ ︸

bucket1

002 , 802︸ ︷︷ ︸
bucket2

024︸︷︷︸
bucket3

045, 075 ,065︸ ︷︷ ︸
bucket4

2. Sorting by 10s places gives:
002, 802︸ ︷︷ ︸

bucket1

024︸︷︷︸
bucket2

045︸︷︷︸
bucket4

067︸︷︷︸
bucket5

170, 075︸ ︷︷ ︸
bucket6

090︸︷︷︸
bucket7

3. Sorting by most significant digit gives:
002, 024, 045, 065, 075, 090︸ ︷︷ ︸

bucket1

170︸︷︷︸
bucket2

802︸︷︷︸
bucket3

Radix Sort algorithm is then:

RadixSort(digits []t, int n, int d)
1: for i = 1 to d do
2: Use a stable sort to sort the Array A on digit i
3: end for

The running time of Radix sort is evaluated as follows:
For each digit, the algorithm consumes time in Θ(n + r) where 1 ≤ r ≤ k − 1
For d digits, it take Θ(d(n + r)) times
Since r = O(n) because k = O(n), and d is constant, Θ(d(n + r)) = Θ(n).
Radix sort is not an in-pace algorithm. It is difficult to write a general purpose version of radix sort.

10 External Sort
We have previously studied the problem of sorting assuming that the elements to be sorted were all in the
main memory. But in practical those cases are rare.

20 10 EXTERNAL SORT

In general data are placed in secondary memories (Discs, magnetic tapes, ,etc.). As input/output time is
in general greater than time spent to access the main memory, the execution time of external sort depends
mostly on input/output operations. The access mode (sequential, random, etc.) is crucial in the design of
external sorting.
The general schema of external sorting is the following:

• The construction of sorted sub-arrays.

• the dynamic allocation of sorted sub-arrays to different locations of the secondary memory,

• the fusion of sub-arrays.

The efficiency of an algorithm to solve these problems relies ont its ability to perform as less as possible
input/output operations. It is also important to avoid the situation where all the sorted sub-arrays are on a
single location when the sorting has not ended yet.

Bibliography

1. Cormen T. H., Leiserson C.E. and Rivest R. L., Introduction to Algorithms, McGraw-Hill, 1990.

2. Sedgewick R., Algorithms in C++,Part 1-4, Addison-Wesley, 2002.

3. Cormen T. H., Leiserson C.E. and Rivest R. L., Introduction to Design and Analysis, Addison
Wesley, 2000.

4. Brassard G. and Bratley P., . Fundamentals of Algorithmics, Prentice-Hall, 1996.

