
COMP302

Operating Systems

including:

An introduction to Unix,

and

Operating Systems Theory

Hugh Murrell

February, 2010



Contents

1 Introduction to Unix 3

1.1 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Some common commands . . . . . . . . . . . . . . . . . . . . 5

1.2.3 The vi editor . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.4 Filename shorthand . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.5 Input-output redirection . . . . . . . . . . . . . . . . . . . . . 12

1.2.6 Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.7 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.8 The environment . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 The UNIX file system . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 The file system . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Displaying the contents of files . . . . . . . . . . . . . . . . . . 18

1.3.3 Permission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.4 Setting permissions . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.5 Running sequences of commands . . . . . . . . . . . . . . . . 21

1.3.6 Changing owners . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.7 Inodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Software maintenance with the make utility . . . . . . . . . . . . . . 22

1.4.1 The make utility . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.2 Build Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.3 Compiling by hand . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.4 Using a Makefile . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.5 Using dependencies . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Networking and the Internet on UNIX machines . . . . . . . . . . . . 25

1.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.3 Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.4 Types of cabling . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.5 TCP/IP Internet addresses . . . . . . . . . . . . . . . . . . . . 28

1.5.6 Gateways and Routers . . . . . . . . . . . . . . . . . . . . . . 30

1.5.7 Telnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.8 Anonymous ftp . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



CONTENTS 1

2 Operating Systems Theory 33
2.1 Process Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Common synchronization problems . . . . . . . . . . . . . . . 34
2.1.2 Mutual exclusion . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.3 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.4 Producer/Consumer problem via semaphores . . . . . . . . . . 39
2.1.5 Reader/Writer problem via semaphores . . . . . . . . . . . . . 40
2.1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 InterProcess Communication under UNIX . . . . . . . . . . . . . . . 43
2.2.1 Shared Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.2 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2.3 Pair Project 2010: two-player maze game: . . . . . . . . . . . 45

2.3 Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 A definition for deadlock . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Resource Allocation Graphs . . . . . . . . . . . . . . . . . . . 46
2.3.3 Resource allocation examples . . . . . . . . . . . . . . . . . . 47
2.3.4 Deadlock Prevention . . . . . . . . . . . . . . . . . . . . . . . 48
2.3.5 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.2 F.C.F.S. Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.3 S.T.F. Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.4 Priority Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.5 Preemptive Scheduling . . . . . . . . . . . . . . . . . . . . . . 54
2.4.6 Round Robin Scheduling . . . . . . . . . . . . . . . . . . . . . 55
2.4.7 Scheduling Tasks on more than one Processor . . . . . . . . . 55
2.4.8 Preemptive Schedules for more than one Processors . . . . . . 60
2.4.9 Scheduling Dependent Tasks . . . . . . . . . . . . . . . . . . . 62

2.5 Virtual Memory and Paging . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.5.2 Demand Paging . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.5.3 Some Common Demand Paging Algorithms . . . . . . . . . . 66
2.5.4 The Optimality of Belady’s Algorithm . . . . . . . . . . . . . 68

2.6 Computer Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6.2 Encryption Systems . . . . . . . . . . . . . . . . . . . . . . . . 70
2.6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.6.4 Introduction to Number Theory . . . . . . . . . . . . . . . . . 72
2.6.5 The Discrete Logarithm Problem . . . . . . . . . . . . . . . . 77
2.6.6 The Diffie-Hellman Key exchange procedure . . . . . . . . . . 78
2.6.7 The Code Protection Problem . . . . . . . . . . . . . . . . . . 79
2.6.8 The Rivest-Shamir-Adleman public key system . . . . . . . . 80
2.6.9 Authentication and Digital Signatures . . . . . . . . . . . . . 81
2.6.10 Secure Shell Environment: . . . . . . . . . . . . . . . . . . . 81

2.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



2 CONTENTS



Chapter 1

Introduction to Unix

1.1 Credits

These notes closely resemble an introduction to UNIX course maintained by Luis
Balona at the South African Astronomical Observatory. This is no accident and
I would like to thank Luis for giving me permission to use his notes as a base for
constructing this set.

1.2 Introduction

The UNIX operating system started off in 1969 in an attempt to design a portable
operating system. In other words, the idea was to have UNIX running on any type
of machine. Up to that time, each brand of computer such as IBM, DEC, etc. used
its own particular software. If you switched machines, you had to re-learn all the
commands. The idea was that with UNIX all this would disappear and it didn’t
matter what machine was being used - the commands would be identical.

At that time there was no computer screen. Instead, you entered commands on
a device similar to a typewriter which printed on paper roll. This was called a
“terminal”. The concept of a terminal is still used, but usually in a different context.
By the 1980’s, video screens started replacing terminals. At first, the video screen
acted just like a terminal in the sense that only pure text could be displayed. For
most purposes this is quite adequate.

However, the visual impact of graphics is so high that very soon software was devel-
oped which could display graphics on the screen. For example, Microsoft developed
its windows operating system to replace the purely text-based DOS. In the same way,
the developers of UNIX created additional software which could be used to display
graphics. This is called the X-windows system. Today, most users of UNIX use
the X-windows rather than basic UNIX. Note that X-windows is part of UNIX (it
doesn’t replace UNIX). As such it can run on any machine which supports UNIX

3



4 CHAPTER 1. INTRODUCTION TO UNIX

provided the hardware (graphics screen) is available.

Your instructor for the Operating Systems course has access to a unix box on his
desk:

hughm.cs.ukzn.ac.za A 10 year old pentium running RedHat 10.0
used by Hugh Murrell as a UNIX work station

The web-site for this course can be found at:

hughm.cs.ukzn.ac.za/~murrellh follow the os link to the
operating systems course

Students taking the Operating Systems course will be given UNIX accounts on the
following UNIX machine

mars.cs.ukzn.ac.za running linux

Once you have been given an account you will be able to log in to mars from the
senior-lab by running ssh or putty. For example, to log in to my account on mars
I would type:

ssh hughm@mars.cs.ukzn.ac.za

and then supply my password to log in and use the UNIX command exit to log
out. Note that you will have to login to your lab machine in the usual way before
you can run ssh or putty. We will be studying some basic UNIX commands and we
assume that you have logged in to your UNIX machine and have the UNIX prompt
on your screen.

1.2.1 Commands

Associated with commands in UNIX is a manual page. This is a document which
tells you in full detail what that particular command does. For example, the com-
mand which lists the files in a directory is called ls. To find out what it does and
how it works, you can look at the manual page on your screen by typing:

man ls

The command man picks out the page of the manual which deals with the command.

Of course, this is all very well, but ls isn’t a very obvious command and you would
be very lucky to guess that this could be the command to list the file names in your
directory. Fortunately, there is a way in which you might be able to find out the
name of the command. This is the apropos command. For example, if you are
looking for a command which lists files, you could type in:



1.2. INTRODUCTION 5

apropos files

You will get the following among a long list:

...

lorder (1) - Finds the best order for member files in an object library

lpr (1) - Sends files to spooling daemon for printing

ls (1) - Lists and generates statistics for files

m4 (1) - Preprocesses files, expanding macro definitions

make (1) - Maintains up-to-date versions of target files and performs

shell commands

makedepend (1X) - create dependencies in makefiles

...

Among this lot is the command you are looking for and a short description of what
it does.

The manual page of ls is typical of the manual page for all UNIX commands. You
will find associated with ls a set of options which are used to modify the behaviour
of the command. For example, ls by itself simply lists the files in the current di-
rectory (try it). However, you may want more information about these files, for
example when they were created or how large they are. This is done by adding the
option -l to the command:

ls -l

There are many other options associated with ls which act in the same way. Look
at the manual page and try them out.

1.2.2 Some common commands

Here is a list of commands which are most often used. I suggest you look at the
manual pages of each of these commands for more details and experiment with some
of the various options. The term “standard output” refers to the screen. Later on
you will see how standard output can be re-directed to a file or device.



6 CHAPTER 1. INTRODUCTION TO UNIX

cal - Displays a calendar

Typing cal without any arguments displays a calendar for the current month. Typ-
ing cal 1996 displays a calendar for the year 1996. cal 6 1996 displays a calendar
for June 1996.

cat - Concatenates or displays files

Typing cat foo displays the contents of a file foo on the screen. It takes no notice
of the fact that you can only see one screen at a time. A better way of displaying a
file is to use the more command. The value of cat is its ability to concatenate files.
For example:

cat foo1 foo2 foo3 > foo123

produces file foo123 which consists of file foo1 follwed by foo2 and foo3.

clear - Clears terminal screen

That’s all it does!

cd - Changes the current working directory

The command cd foo changes the current directory to foo. cd .. takes you to the
directory above the current working directory. cd without arguments takes you to
your home directory.

cmp - Compares two files

cmp foo1 foo2 prints nothing if file foo1 is identical to file foo2. If there are
differences, it prints the byte and line number where the differences occur.

compress, uncompress - Compresses and expands data

The command compress foo compresses the file foo to file foo.Z which is smaller
in size. The original file, foo is deleted. To restore foo, use uncompress foo.Z.



1.2. INTRODUCTION 7

cp - Copies files

cp foo1 foo2 creates a new file foo2 which is an identical copy of foo1. If foo2
already exists, it is lost. The normal usage is cp foo1path/foo1 . which takes file
foo1, residing in another directory foo1path, and creates a file of the same name
in the current directory. Another use is to copy whole directory trees to another
location. For example, cp -r foopath . copies everything in foopath, including
its subdirectories and their contents, to the current directory.

du - Displays a summary of disk usage

This command lists the number of blocks of disk usage in the current directory and
all subdirectories.

echo - Writes its arguments to standard output

For example echo "Hello World!" will display the message Hello World!. What
appears to be a rather useless command at first turns out to have a great many uses,
as you will find out.

find - Finds files matching an expression

This command searches for a file matching a name or part of a name in the current
directory and its subdirectories. It has a rather obscure syntax. For example, to
search for files in directory /user2/vk which have the characters “foo” somewhere
in there names, type:

find /user2/vk -name "*foo*" -print

Files with names such as foo1, newfoo, old.foo etc will all be listed.

grep - Searches a file for patterns

This is one of the most useful commands. It allows you to look for a string of char-
acters inside files. For example, suppose you have forgotten the name of the file in
which you were writing a letter to Karen. Suppose you remember that in the file
somewhere you had mentioned Karen by name. Then you may type:

grep -i Karen *



8 CHAPTER 1. INTRODUCTION TO UNIX

which will search for all files in the current directory looking for the name Karen

inside them. The -i flag instructs grep to ignore capitalization, so that it will find
names such as Karen, KAREN, karen etc.

kill - Sends a signal to a running process

kill 999 stops and deletes the process with process number 999. Use this command
to stop a job running in the background, but to use it you need to know its process
number. For more details see ps.

ln - Link to a file

UNIX has a rather peculiar feature - the ability to link to a file. Essentially, this
means that you can have one copy of a file sitting in a certain directory but you can
have what amounts to a copy of the same file in another directory. The difference
is that this copy takes up almost no disk space if it is a link. For example, you
may have a very large file, foo sitting in directory foo1dir, but you need to use it
another directory otherdir. You could, of course, use the cp command to make a
duplicate of foo in otherdir, but this will use the same amount of disk space as
the original file foo. To conserve disk space, you might decide to make a link to
foodir/foo in directory otherdir using:

ln -s foodir/foo foo

which creates what appears to be file foo in otherdir. However, it is not a file, but
a link. But it behaves just as if it were the original file foodir/foo. Deleting the
link using rm does not delete the original file in foodir/foo.

lpr - Sends files to spooling daemon for printing

The standard UNIX print command is lpr. However, in our lab the user must
download print files to their local Microsoft machine and print from there. That
way all accounting is kept in place.

ls - Lists and generates statistics for files

One of the most common commands. It just displays a listing of all files in the
current direcory. Some of the more useful options are as follows:

ls -l - Gives full information for each file.

ls -1 - Lists files, one per line.



1.2. INTRODUCTION 9

ls -F - Appends a slash if the file is a directory.

ls -a - Lists “invisible” files as well (files begining with a dot).

The options may be concatenated, e.g. ls -laF. It is annoying that there is no
option for listing only directories. One way of doing this is the command ls -F |

grep /. This uses two commands linked by a pipe (the symbol |). You will learn
about pipes later.

mkdir - Makes a directory

The same as the familiar DOS command. mkdir foo creates subdirectory foo in
the current directory.

more - Displays a file one screenful at a time

The standard way of displaying the contents of files on the screen, one screen at a
time, e.g. more foo. Press the spacebar to view another screen or type q to quit.

mv - Moves files and directories

This command is useful to rename files or directories. For example, mv foo1 foo2

renames file or directory foo1 to foo2. Too bad if foo2 already exists; it is deleted
without warning.

passwd - Changes password file finformation

Use passwd to change your password. It will ask you for the new password and for
a confirmation.

ps - Displays current process status

This command is normally used to get the process number of some job you want to
kill. For example, suppose you are logged in twice and you want to be only logged
in at the current terminal. Suppose your user name is vk. First, you find all the
processes associated with vk using:

ps -a | grep vk

The number in the first column is the process number, say it is 999. Next you kill
the process using kill 999. There are many other uses for it, but this is one of the



10 CHAPTER 1. INTRODUCTION TO UNIX

more common ones. Of course, you need to be sure that the process number is the
correct one or you may find you have killed some other process instead of your login
shell. Fortunately, you can only kill processes that belong to you (unless you are the
superuser).

pwd - Displays the pathname of the current working directory

Tels you in what directory you happen to be in, but gives the full path name.

rm - Removes (unlinks) files and directories

Very useful, but dangerous command. The command rm foo deletes the file foo;
rm * deletes all files in the current directory, but not subdirectories. You should use
rm -i * if you want to be prompted before each file is deleted. rm -r foo deletes
the directory foo and all its contents (including subdirectories).

tail - Writes last few lines of a file to standard output

tail foo displays the last 10 lines of file foo on the screen.

tar - Manipulates tape archives

This command was originally developed to spool data on or off mag tapes, but has
other uses which have nothing to do with tapes. To use this command to read
data from a tape, the tape must have been written with tar (perhaps on another
machine).

The usage for reading a tape is tar xvf tape.device.name. The tape device name
is usually something like /dev/rmt1h, but can be omitted if it is the default name
/dev/rmt0h. In what follows I will assume the tape device is the standard one and
omitt its name

To write the whole of the current directory to tape, use tar cv .. To write subdi-
rectory foo, use tar cv foo.

To list the contents of a tape archive (does not write to disk), usr tar t.

A very common, non-tape usage is to bundle-up a whole directory tree into a single
file. You may want to do this when copying a directory tree to another machine,
for example. The command is: tar cvf foo.tar foo where foo is the directory
and foo.tar is the name of the file to contained the bundled-up directory. Often
this is compressed to give foo.tar.Z. After transfer to another machine, it may
be un-bundeled using tar xvf foo.tar (you need to uncompress it first if it was



1.2. INTRODUCTION 11

originally compressed). This command creates the original directory tree on the new
machine.

w - Prints a summary of current system activity

Use this command to find out who is logged on.

1.2.3 The vi editor

One of the most common things you will want to do is to create files and to modify
them. You do this by using an editor. There are many kinds of editors. In the early
days of hardcopy terminals, it was important to minimize time spent in printing to
paper. The editor would do this by operating on one line at a time - a line editor.
Most of the common UNIX editors started in this way, but gradually changed to
accomodate screen editing.

There are two standard UNIX editors – vi and emacs. People who use the one
violently condemn the other. Editors are a matter of personal taste. Most people
use neither vi or emacs, though both are available on the system and you can read
how to use them with the aid of the respective manual pages. We suggest that you
use vi, the standard in UNIX editing. At the end of this document, in appendix A,
you will find a short introduction to vi editing. Read it and try editing some text
files and save them in your home directory on your assigned UNIX box.

1.2.4 Filename shorthand

Suppose you’re typing a large document like a book. You might have separate files
for each chapter, called ch1, ch2, etc. Or, if each chapter were broken into sec-
tions, you might have files called ch1.1, ch1.2, etc. What if you wanted to print
the whole book? You could say lpr ch1.1, lpr ch1.2 ... but this would soon
get rather boring. This is where filename shorthand comes in. If you say:

cat ch*

the asterisk, *, is taken to mean “any string of characters”, so ch* is a pattern that
matches all filenames that begin with ch. The above command will print to the
screen all the chapers of the book in alphabetical order. The * can be anywhere and
can occur several times. Thus

rm *.save



12 CHAPTER 1. INTRODUCTION TO UNIX

removes all files that end in .save. The strings ch* and *.save are examples of
regular expressions. Many unix command allow their parameters to be specified as
regular expressions. To find out more about regular expressions read appendix B at
the end of these notes.

1.2.5 Input-output redirection

Most of the commands we have seen so far produce output on the terminal screen.
The terminal screen is called standard output. In the same way, the keyboard is called
standard input. There is also standard error. This is the place where system error
messages are displayed. Normally, this is also the screen so that standard output
and standard error are the same (it would be most unfortunate if error messages
disappeared into some obscure file).

It is a feature of UNIX that standard input, output or error can nearly always be
replaced by a file. For example, ls normally lists the files in your current directory
on the screen. If you prefer this listing to be a file called foo, you would type:

ls > foo

Now, foo will contain the file listing that would normally go to the screen. The
symbol > means “redirect the output to the file that follows”. The file foo will be
created if it doesn’t exit or the previous contents overwritten if it does. No output
appears on your screen.

The symbol >> operates in the same way as >, except that it stands for “add to
the end of the following file”. For example,

cat foo1 foo2 foo3 >> temp

will append files foo1, foo2, foo3, in that order, to the end of temp. If temp

doesn’t exist, it will be created.

Some commands produce output on standard error, even when they work properly.
For example, find will do this if a directory you are searching is protected. It may
be desireable in this case to re-direct standard error to a file. The command:

find /usr -name foo -print 2> foo.error

will direct all error messages from this command to the file foo.error. The file de-
scriptor number for standard error is 2. Sometimes you want both standard output
and standard error directed to the same file. Here is how you do it:



1.2. INTRODUCTION 13

find /usr -name foo -print 1> foo.outerror 2>&1

This doen’t make all that much sense, but it works because the file descriptor number
for standard output is 1. The file descriptor number for standard input is 0.

In a similar way, the symbol < alows you to redirect input which would normally be
from the keyboard to a file. For example, if file foo contains a list of users produced
by the command w > foo, you could use:

grep vk < foo

to display information for user vk only.

It is also possible to include standard input for a command along with the command
itself. In other words, if you have a program which requires some keyboard input,
you can include it as in this example:

grep "$*" <<Junk

search pattern 1

search pattern 3

search pattern 3

Junk

What is happening here is that the input is on three separate lines, search pattern

1, search pattern 2, search pattern 3. The block of input is demarcated by
the word Junk at the begining and at the end. This can be any unique character
or string of characters – it doesn’t have to be Junk. The symbol "$*" tells grep to
look for standard input within the lines demarcated by Junk. This might seem very
complicated and rather useless, but it can be very useful indeed. This construction
is called a here document. It means that standard input is right here instead of the
keyboard.

1.2.6 Pipes

In the last section we have shown how the output from one command (w > foo) can
be used as input to another command (grep vk < foo) using the intermediate file
foo. You can do away with such intermediate files by using a pipe. In this example,
you could more conveniently type:

w | grep vk



14 CHAPTER 1. INTRODUCTION TO UNIX

to get the same result. The symbol | is called a pipe and is used to connect the
standard output of one command to the standard input of another command. Any
number of commands may be connected by pipes.

1.2.7 Processes

When you log in, a program know as a shell takes over. When you type in commands,
you are communicating with the shell. The shell is an interface between you and
the fundamental system which does all the work called the kernel. As far as you are
concerned, it is the shell that is doing the work, but in reality all the shell does is
translate your commands to something the kernel can understand. There are many
types of shell, all doing the same thing but in slightly different ways. We will talk
about this later.

One of the things the shell can do is to run more than one program at a time. For
example, suppose you have a huge, time consuming program called foo. You could
run it and wait for several munites for it to complete. This is inconvenient because
you won’t be able to use that terminal screen until the program has finished. It
is better to set this big program running in the background. This allows you to
continue working with the computer. When the program finishes, the shell will alert
you by printing an appropriate message on the screen.

As an example, suppose you want to locate a certain file foo on the disk. There
may be thousands of files, so that the find command may take a long time before
finishing. You may set it running in the background as follows:

find / -name foo -print > foo.list &

The ampersand sign, &, at the end of a command line says to the shell “start this
command running, then take further commands from the terminal immediately”,
that is, don’t wait for it to complete. The command will begin, but you can do
something else while it is running. Directing the output to file foo.list keeps it
from interfering with whatever you are doing at the same time.

Notice that as soon as you start this command, the shell responds with:

[1] 8413

or some such number. The number 8413 is the process-id of the job. If the program
running in the background is out of control, you can kill it using



1.2. INTRODUCTION 15

kill 8413

If you don’t know the process number, you have to look for it using the ps command.

It is important to distinguish between programs and processes. find is a program;
each time you run find, or any program, it creates a new process. There is an
unique process-id number associated with each running process. The shell is itself
a process. When you log in, you set the shell program running. When you logout,
you kill the shell process. You can log yourself out by using kill if you know what
the process id of the shell is (run ps to find out).

When you logout, all running processes are killed. This includes any processes that
you might have set running in the background using &. Sometimes the program
takes so long to run to completion that you may want it running even after you have
logged out. The command nohup was created to deal with this situation. If you say

nohup command &

the command will continue to run if you log out. Any output from the command
will be saved in a file called nohup.out.

Sometimes you start a program running normally, but decide that it was a bad idea
and it would have been better to run it in the background. This can be done without
re-starting the program by typing Ctrl-Z. In other words, hold down the Ctrl key
on the keyboard and type Z. This temporarily halts the program. Then you continue
execution of the program in the background by typing:

bg

Now you can do other things. To return the background process to the foreground,
type

fg

at any time.

1.2.8 The environment

One of the virtues of the UNIX system is that there are several ways to bring it
closer to your personal taste. This is done by “tailoring the environment”. The
method for tailoring your environment depends on what ”shell” you are running.



16 CHAPTER 1. INTRODUCTION TO UNIX

Unix provides for many diferent shells. Here are the three most common shells:

Shell Name Executed at login
bash GNU Bourne Shell .profile
csh C Shell .cshrc and .login
tcsh Tc Shell .cshrc and .login

On mars users will run bash by default. bash is the GNU version of the Bourne
shell sh based and it has more powerful features. To see all the features available
consult the man pages.

When you log on, the bash reads a file called profile stored in a special directory
(/etc) which can only be modified by the superuser. Then it reads a file called
.profile in your home directory. This is one of the “invisible” files (because it
starts with a dot). You are not allowed to change /etc/profile, which sets up
the basic environment for all users, but you may change .profile to suit your own
taste.

One of the most common environment variables is PATH. This specifies the path
that the shell will take to look for programs or commands. In general, the PATH

environment variable in /etc/profile is set up so that the shell first looks in the
current directory for the program or command. If it cannot find it in the current
directory, it will look in /bin, then in /usr/bin, then in /usr/local/bin. This is
an example of a path. You can display the path by typing:

echo $PATH

If you want the shell to search for some particular place in your directory for a pro-
gram, you can add to the search path by including these lines in your .profile file:

PATH=$PATH":/user1/vk/foo"

export PATH

where /user1/vk/foo is the full pathname of the directory foo where the command
is stored. The command export ensures that processes spawned by the current
process have the new PATH environment.

You may want to look at all the environmental variables that have been set. Do this
using: env



1.3. THE UNIX FILE SYSTEM 17

1.3 The UNIX file system

1.3.1 The file system

Everything in the UNIX system is a file. A file is just a sequence of bytes (a byte
is a unit of data 8 bits long – think of it as a character). This is true not only of
disk files, but also of tape files, line printer files, etc. Because most of the UNIX
commands deal with files, a good understanding of the file structure is important.

When a UNIX system is created on an empty disk, two directories are created.
These are called /, the root directory, and /usr, the user directory. All directories,
including /usr can be thought of as subdirectories of /.

The machine expects to see the kernel as a file in the root directory. (If you remem-
ber, the kernel is a program which executes commands passed to it by the shell.)
This file is called vmunix on most machines. When the machine boots (i.e. starts
up), it loads the kernel into memory.

There are several directories which are of vital importance and which are present on
all UNIX machines.

/bin: This subdirectory of / contains most of the unix commands, such as ls,

grep, more, etc. (Remember, a command is just a program which you run.)

/etc: This subdirectory of / contains important files (not programs) needed by the
system. This includes files such as passwd, (the username and password file),
hosts (a file listing the addresses of all machines on the network), printcap
(a file listing the characteristics of printers connected to the system), motd,
“message of the day” – the file containing the text which is displayed when a
user first logs in, profile, which sets up the environment for all users, etc.

/dev: A directory containing “device drivers” for various peripherals (disks, tapes,
etc.). Rather than having special system routines to, for example read a mag-
netic tape, there is a file called /dev/rmt0h. Inside the kernel, references to the
file are converted into hardware commands to access the tape.

/tmp: A directory used for temporary storage. When you edit a file, for example,
the editor saves a copy of the original file in this directory which has write and
read permission set for all users. When the editor has finished its job, it deletes
this temporary file.

/usr/bin: This subdirectory of /usr contains other important unix commands.
In some systems, such as on ours, it is this directory which actually contains
all the UNIX commands: /bin is just a link to /usr/bin.

/usr/man: This subdirectory of /usr contains the manual pages in eight subdirec-
tories: man1, man2, ....

We will discuss some of these directories and files in later chapters. In small systems,
individual users are allocated space in the /usr directory. In other words, the home



18 CHAPTER 1. INTRODUCTION TO UNIX

directory of vk, for example, will be a subdirectory of /usr and will have the path
/usr/vk. On our system, we have separate disks set aside to hold private user
directories. In this case, a separate file system is created for each disk (/user1 and
/user2 on our machine). This filesystem is then mounted as a subdirectory of /, the
root directory. This is done by creating empty subdirectories user1 and user2 in /

and then using these as mount points for the two disks. Each disk, then, appears as
a subdirectory of root when it is mounted. You do the same thing when you mount
a magneto-optical disk or cdrom on our system.

A single disk can, in fact, be subdivided so that to the system it appears as different
disks. This is called partitioning. Our system disk is divided into four partitions: /,
/usr, /proc and /catalogs which all share the same physical disk. On booting,
/usr, /proc and /catalogs and other file systems are mounted on root. /proc is
used by the system as memory swapping storage; /catalogs is a file system I created
to accommodate astronomical catalogues. The kernel reads the file /etc/fstab to
determine what filesystems to mount. The command df lists the filesystems and
their mount points.

1.3.2 Displaying the contents of files

The od command allows any file to be displayed as a sequence of bytes (“a bag of
bytes”). Normally, many files cannot be displayed on the screen because they are
binary files. od converts each byte to a printable character. To display the file foo,
use the command:

od -c foo or od -cb foo

The former displays the contents as characters, the latter as octal numbers. As an
exercise, you should display the contents of directory names, links, etc. Note that
each one of these is just “a bag of bytes” and nothing more.

1.3.3 Permission

Every file has a set of permissions associated with it, which determine who can do
what with the file. If you keep your love letters in a directory, you probably do not
want anybody to read them. To do this you need to change the read permission of
the directory. But let me warn you that the superuser can still read them!

When you login, you type your username and password. The system actually recog-
nises you by a number, called the user id or uid. Besides the uid, you are assigned
a group identification or gid which places you in a class of users. On our system,
all users have been assigned the same gid (which is represented by a number but
given the name users), but of course the uid’s are different. It may be desirable in



1.3. THE UNIX FILE SYSTEM 19

some large systems which have, say physicists and astronomers, to have a gid for
physicists (say phys) and a different one for astronomers (say astros).

The file /etc/passwd is the password file; it contains all the login information about
each user. You can discover your uid and gid, as does the system, by looking at this
file:

aavdw:4OeLd.nWLZV6g:24:15:Audrey van der Wielen:/user2/aavdw:/bin/ksh

vk:mKaffnwrg8azY:30:15:Veronique K:/user2/vk:/bin/ksh

The fields are separated by colons and laid out like this:

login-id:encrypted-password:uid:gid:your-name:login-directory:shell

Note that the password appears here in encrypted form. Anyone can read it, but it
is impossible to decode it, so it is useless to try. On our system all users have the
same gid = 15 (users).

When you try to read, write or execute a file, the kernel looks at the permissions
set for the file and decides on this basis whether you are allowed to do any of these
three these operations. As file owner, you have one set of read, write and execute
permissions. Your group has a separate set. Everyone else (“world”) has a third set.

When you use the command ls -l to display your files, the output looks something
like this:

-rw-r--r-- 1 lab users 184 Nov 20 11:09 foo

-rw-r--r-- 1 lab users 33 Nov 18 11:53 foo.list

-rwxr-xr-x 1 lab users 3086 Nov 20 08:47 foox

These lines tell us that all three files are owned by uid lab, gid users. The first file,
foo, is 184 bytes long, was created on November 20 at 11:09 and has only one link
– the number just before the uid.

The string -rw-r--r-- is how ls represents permissions on the file. The very
first - indicates that it is an ordinary file. If it were a directory, there would be
a d here. The next three characters encode the owner’s (based on the uid lab)
read, write and execute permissions. The next three characters encode the group
permissions. Finally, the last three characters encode permissions for everyone else.
In this example, lab can read and write to foo, but group and world can only read.
This is fine - you don’t want some other user to overwrite your file. You could do this
by changing the permissions of foo to -rw-rw-rw-. Anyone can read the contents
of all three files. Also, everyone can read and execute foox.

Anyone can execute the passwd command to change her password. This modifies



20 CHAPTER 1. INTRODUCTION TO UNIX

the password file /etc/passwd. Don’t get confused by these two files with identical
names – one is a command /bin/passwd, the other is a file /etc/passwd. Since
the file /etc/passwd can only be modified by the superuser, you may wonder how
anyone can change his password. If you do a ls -l /bin/passwd you get:

-rws--x--x 3 root bin 16384 May 20 1996 /bin/passwd

This tells us that only the owner, root, has permission to write to the file; everyone
else can only execute the file. But note the execute permission character for the
owner, which is supposed to be x, has been replaced by s. This tells the system that
when /bin/password is executed by anyone, it must behave as if that person where
root. In other words, the uid is set to root on execution. This is called making the
command “set-uid”. Since on execution, /bin/passwd has root privileges, it can
modify the /etc/passwd file.

Directory permissions behave a little differently, but the basic idea is the same. Here
is the output of ls -ld /usr/bin:

drwxr-xr-x 5 root system 7168 Oct 18 10:44 /usr/bin

An r field means that you can read the directory, so that you can find out what
files it contains using ls. A w means you can create or delete files in this directory,
because that requires modifying and therefore writing the directory file. The x field
does not mean execute in this case. It stands for “search”. If a field is set to --x,
you can no longer use ls to list the contents of the directory or read any files, but
you can access any file that you know is there. Similarly, with r-- users can see
(ls) the files, but not use the contents of a directory.

1.3.4 Setting permissions

The chmod (change mode) command changes permissions on files. The syntax of
this command is very clumsy. The most often used options are:

chmod +x foo

which allows everyone to execute the file foo, and:

chmod -w foo

which turns off write permission to everyone, including the owner of the file. Apart
from the superuser, only the owner can change permissions on a file.



1.3. THE UNIX FILE SYSTEM 21

These options are fine for simple permission changes, but get very complex when
several permission fields have to be changed at the same time. In this case it is much
easier applying another option of chmod – using numerical values. To use these you
need to know something about octal notation. Each of the three permission fields,
rwx, can be set or unset if there is a one or zero in that particular bit position. For
example 001 010 100 stands for --x-w-r--; 011 110 101 stands for -wxrw-r-x,
etc.

Now, a triplet such as 011 can be converted to a single octal number. To do this,
you must multiply each bit by the numbers 4, 2, and 1 respectively and add up the
result. For example:

110 = 1× 4 + 1× 2 + 0× 1 = 6;
011 = 0× 4 + 1× 2 + 1× 1 = 3.

The octal number that represents -wx rw- r-x or 011 110 101 is 365; --x -w- r--

is represented by 124 etc. The command to change these permissions is therefore
chmod 365 foo and chmod 124 foo respectively.

1.3.5 Running sequences of commands

Sometimes it is useful to be able to run a file containing a sequence of commands.
For example, if you need to run these commands very frequently, it is easier if these
commands are stored in a file. To run the sequence all you need to do is type in the
name of the file. However, before this can be done, the file must be made executable
using chmod +x.

1.3.6 Changing owners

Only the superuser can change the ownership of a file. This is done using:

chown vk foo

which changes the owner of file (or directory) foo to user vk. The wild card symbol
may be used: chown vk *. All files and subdirectories in directory tree foodir may
be changed using chown -R vk foodir.



22 CHAPTER 1. INTRODUCTION TO UNIX

1.3.7 Inodes

A file has several components: a name, contents and administrative information
such as permissions and modification times. The admin information is stored in the
inode (should be called “i-node”, but the hyphen has fallen away).

It is important to understand the concept of inodes because in a sense, inodes are
the files. All the directory hierarchy does is provide convenient names for files. Files
are recognised by the computer not by their names, but by their inode numbers
(i-numbers). You can obtain the i-number of foo using ls -i foo. If foodir is a
subdirectory, you can display the i-numbers of all files in the directory using ls -i

foodir. A directory name is nothing more than a file giving the i-number for each
file belonging to it.

A link is just a filename which has the same i-number as another file.

1.4 Software maintenance with the make utility

Compiling your source code files can be tedious, specially when you want to include
several source files and have to type the compiling command every time you want
to do it. Well, I have news for you... Your days of command line compiling are
(mostly) over, because YOU will learn how to write Makefiles. Makefiles are special
format files that together with the make utility will help you to automagically build
and manage your projects.

For this session you will need the following c++ program and header files:

maze.cc

nwin.cc

nwin.h

mazeGame.cc

I recommend creating a new directory and placing all the files in there.

note: We will use g++ for compiling. You are free to change it to a compiler of your
choice.

1.4.1 The make utility

If you run make, this program will look for a file named Makefile in your directory,
and then execute it. If you have several makefiles, then you can execute them with
the command: make -f MyMakefile There are several other switches to the make
utility. For more info, man make.



1.4. SOFTWARE MAINTENANCE WITH THE MAKE UTILITY 23

1.4.2 Build Process

Compiler takes the source files and outputs object files

Linker takes the object files and creates an executable

1.4.3 Compiling by hand

The trivial way to compile the files and obtain executables, is by running the com-
mands:

g++ -o maze maze.cc

g++ -c -o nwin.o nwin.cc

g++ -c -o mazeGame.o mazeGame.cc

g++ -o mazeGame mazeGame.o nwin.o -lncurses

1.4.4 Using a Makefile

The basic makefile is composed of:

target: dependencies [tab] system command

This syntax applied to our example would look like:

all: maze win mazeG mazeGame

maze:

g++ -Wall -o maze maze.cc

win:

g++ -Wall -c -o nwin.o nwin.cc

mazeG:

g++ -Wall -c -o mazeGame.o mazeGame.cc

mazeGame:

g++ -Wall -o mazeGame mazeGame.o nwin.o -lncurses

To run this makefile on your files, type:



24 CHAPTER 1. INTRODUCTION TO UNIX

make -f Makefile

On this first example our target is called all. This is the default target for makefiles.
The make utility will execute this target if no other one is specified. We also see
that there are no dependencies for target all, so make safely executes the system
commands specified. Finally, make compiles the program according to the command
line we gave it.

1.4.5 Using dependencies

Sometimes it is useful to use different targets. This is because if you modify a single
file in your project, you don’t have to recompile everything, only what you modified.
Here is our example with dependencies:

# make clean gets rid of previous object files and executables

# make will generate maze and mazeGame executables

OBJS = mazeGame.o \

nwin.o

all: maze mazeGame

maze:

g++ -Wall -o maze maze.cc

mazeGame: $(OBJS)

g++ -Wall -o mazeGame $(OBJS) -lncurses

clean:

rm -rf $(OBJS) mazeGame maze

Now we see that the target all has only dependencies, but no system commands.
In order for make to execute correctly, it has to meet all the dependencies of the
called target (in this case all). Each of the dependencies are searched through all
the targets available and executed if found. In this example we see a target called
clean. It is useful to have such target if you want to have a fast way to get rid of
all the object files and executables and force recompilation and linking at your next
make. Also note the use of comments.

As you can see, variables can be very useful sometimes. To use them, just assign a
value to a variable before you start to write your targets. After that, you can just
use them with the dereference operator $(VAR).



1.5. NETWORKING AND THE INTERNET ON UNIX MACHINES 25

Where to go from here With this brief introduction to Makefiles, you can create
some very sophisticated mechanism for compiling your projects. However, this is
just a tip of the iceberg.

1.5 Networking and the Internet on UNIX machines

1.5.1 Introduction

When computers first became available, the typical institute consisted of one single
large, expensive machine which catered for many users, perhaps hundreds of users
at a university campus. This single machine is usually called a mainframe. Each
user was connected to the mainframe by means of a serial, low speed, line and a
terminal (which simply displayed the information in text mode). No connection
existed between the mainframe and any other computer.

This is quite adequate for many purposes and was the only practical solution at a
time when computers were very expensive items. By the mid 1970’s, experiments
were made in connecting computers to each other. The benefit of having computers
talking to each other is that instead of duplicating valuable and expensive resources
on each machine, it makes it possible for these resources to be made available on
all machines which are on the network. The connections that were made in those
early days involved computers situated in close proximity to each other (in the same
building). The connections were accomplished by connecting each computer with
coaxial cable. This allows much higher data transfer rates than the serial lines which
connect terminals to computers.

Local area networks (LANS) are those networks usually confined to a small geo-
graphic area, such as a single building or a college campus. LANs are not necessarily
simple in design, however, as they may link many hundreds of systems and service
many thousands of users. The development of various standards for networking pro-
tocols and media has made possible the proliferation of LANs worldwide for business
and educational applications.

1.5.2 Protocols

Network protocols are standards that allow computers to communicate. A typical
protocol defines how computers should identify one another on a network, the form
that the data should take in transit, and how this information should be processed
once it reaches its final destination. Protocols also define procedures for handling
lost or damaged transmissions or “packets”. IPX, TCP/IP, DECnet, AppleTalk and
LAT are examples of network protocols. At SAAO we used DECnet and LAT, but
these have now been abandoned and only TCP/IP is used. TCP/IP is also the
protocol used by the Internet.



26 CHAPTER 1. INTRODUCTION TO UNIX

Although each network protocol is different, they all use the physical cabling in
the same manner. This common method of accessing the physical network allows
multiple protocols to peacefully coexist, and allows the builder of a network to use
common hardware for a variety of protocols. This concept is known as “protocol
independence”, meaning that the physical network doesn’t need to concern itself
with the protocols being carried.

1.5.3 Ethernet

Ethernet is the most popular LAN technology in use today. Other LAN types
include Token Ring, Fiber Distributed Data Interface (FDDI), and LocalTalk. Each
has its own advantages and disadvantages. Ethernet strikes a good balance between
speed, price and ease of installation. These strong points, combined with wide
acceptance into the computer marketplace and the ability to support virtually all
popular network protocols, makes Ethernet the perfect networking technology for
most computer users today.

An important part of designing and installing an Ethernet is selecting the appro-
priate Ethernet medium for the environment at hand. There are four major types
of media in use today: ThickWire, thin coax, unshielded twisted pair and fiber op-
tic. Each type has its strong and weak points. Careful selection of the appropriate
Ethernet medium can avoid recabling costs as the network grows.

Ethernet media are used in two general configurations or topologies: “bus” and
“star”. These two topologies define how “nodes” are connected to one another. A
node is an active device connected to the network, such as a computer or a piece of
networking equipment, for example, a repeater (hub), a bridge or a router.

A bus topology consists of nodes strung together in series with each node connected
to a long cable or bus. Many nodes can tap into the bus and begin communication
with all other nodes on that cable segment. A break anywhere in the cable will
usually cause the entire segment to be inoperable until the break is repaired. The
diagram below shows four computers connected together in a bus topology. A cable
break between 1 and 2, for example, renders the whole system unworkable until it
has been repaired.

1 2 3 4

Star media links exactly two nodes together. The primary advantage of this type
of network is reliability. If a point to point segment has a break, it will only affect
the two nodes on that link. Other nodes on the network continue to operate as if
that segment were nonexistent. The diagram below shows computer 1 connected to
a hub 2 which in turn links three other computers 3, 4, 5 in a star topology. A
break between the hub and 3 will not affect the connection between the remaining



1.5. NETWORKING AND THE INTERNET ON UNIX MACHINES 27

computers, 1, 4, 5.

1 2

3

4

5

1.5.4 Types of cabling

ThickWire, or 10BASE-5 Ethernet, is generally used to create large “backbones”.
A network backbone joins many smaller network segments into one large LAN.
ThickWire makes an excellent backbone because it can support many nodes in a
bus topology and the segment can be quite long. It can be run from workgroup
to workgroup where smaller departmental networks can then be attached to the
backbone. A ThickWire segment can be up to 500-m long and have as many as 100
nodes attached. ThickWire is a thick, hefty, coaxial cable, and can be expensive
and difficult to work with. A thick coaxial cable is used because of its immunity
to common levels of electrical noise, helping to ensure the integrity of the network
signals.

Thin coax, or 10BASE-2 Ethernet, offers many of the advantages of ThickWire’s
bus topology with lower cost and easier installation. Thin coax coaxial cable is
considerably thinner and more flexible than ThickWire, but it can only support
30 nodes, each at least 0.5-m apart. Each segment must not be longer than 185
m. Subject to these restrictions, thin coax still can be used to create backbones,
albeit with fewer nodes. A thin coax segment is actually composed of many lengths
of cables, each with a BNC type connector on both ends. Each cable length is
connected to the next with a “T” connector wherever a node is needed. Nodes can
be connected or disconnected at the “T” connectors as the need arises with no ill
effects on the rest of the network. Thin coax’s low cost, reconfigurability, and bus
topology make it an attractive medium for small networks, for building departmental
networks to connect to backbones and for wiring a number of nodes together in the
same room, such as a computer lab.

Unshielded twisted pair, or UTP, cable offers many advantages over the ThickWire
and thin coax media. Because ThickWire and thin coax are coaxial cables, they
are relatively expensive and require some care during installation. UTP is similar
to, if not the same as, the telephone cable. A UTP or 10BASE-T Ethernet, uses a
star topology. Generally a computer is located at one end of the segment, and the
other end is terminated in a central location with a repeater or hub. UTP segments
are limited to 100 meters, but UTP’s point-to-point nature allows the rest of the
network to function correctly if a break occurs in a particular segment.



28 CHAPTER 1. INTRODUCTION TO UNIX

Fiber Optic, or 10BASE-FL Ethernet, segments are similar to twisted pair. Fiber
optic cable is more expensive, but it is invaluable for situations where electronic
emissions and environmental hazards are a concern. The most common situation
where these conditions threaten a network is in LAN connections between buildings.
Lightning strikes can wreak havoc and easily destroy networking equipment. Fiber
optic cables effectively insulate networking equipment from these conditions since
they do not conduct electricity. Fiber optic cable is used between domes at Suther-
land and to connect the electronics workshop and the computer room in Cape Town.
The Ethernet standard allows for fiber optic cable segments up to 2km long.

1.5.5 TCP/IP Internet addresses

Information is sent by one computer to another in “packets”. Each packet has the
address of the machine for which it is destined. Only that machine gets the packet.
This is the same as sending a letter with the address written on the envelope. A
packet is of fixed size, so the information being sent probably consists of a large
number of packets. These packets may or may not arrive in the proper sequence.
The machine which is receiving the packets has the responsibility of assembling them
in the correct order.

An IP (Internet Protocol) address uniquely identifies a node or host connection to
an IP network. System administrators or network designers assign IP addresses to
nodes. IP addresses are configured by software; they are not hardware specific. An
IP address is a 32 bit binary number usually represented as 4 fields each representing
8 bit numbers in the range 0 to 255 (sometimes called octets) separated by decimal
points.

An IP address consists of four decimal numbers (called octets) separated by dots.
For example, the IP address of hughm.cs.unp.ac.za is 143.128.82.130. Each of
the four numbers can be in the range 0 – 255. The IP address consists of two parts:
one part identifies the domain and the other the node. All machines on the same
LAN have the same domain address. For example, the domain address for computer
science staff is 143.128.82.nnn. When a new computer is added to our LAN, a new
node address nnn must be allocated. That means we can have a maximum of 256
computers or network devices attached to the computer science staff LAN.

Obviously, this is not sufficient for the whole of CompSci on the PmB campus.
To cater for CompSci we have been allocated a domain class which in this case is
143.128.nnn.nnn. This allows CompSci to have a maximum of 256× 256 = 65536
computers in their network. The class of the address determines which part belongs
to the domain address and which part belongs to the node address. Classes can be
distinguished by the first number of the IP address. If that number is between:

• 1 and 126 it is a Class A address.

• 128 and 191 it is a Class B address.



1.5. NETWORKING AND THE INTERNET ON UNIX MACHINES 29

• 192 and 223 it is a Class C address.

• 224 and 239 it is a Class D address.

• 240 and 255 it is a Class E address.

127 is reserved for loopback and is used for internal testing on the local machine.

The following list shows which part belongs to the domain (D) and which part
belongs to the node (n).

• Class A – DDD.nnn.nnn.nnn

• Class B – DDD.DDD.nnn.nnn

• Class C – DDD.DDD.DDD.nnn

150.215.17.9 is a Class B address so its domain is defined by the first two octets
and it’s node is defined by the last 2 octets. Class D addresses are reserved for
multicasting and Class E addresses are reserved for future use so they should not be
used.

It is obvious that Class A networks can accommodate a huge number of nodes, Class
B networks a smaller number. Our Class C network can accommodate a maximim
of 256 nodes (because there are 8 bits in the node and 28 = 256). Class A and
Class B networks might be assigned to large institutes like Universities. There is
a central registry in the USA which assigns domain addresses. Of course, no two
domain addresses can be the same. Each machine in a domain must be assigned
a unique node number. This is the responsibility of the network manager. A list
of all the addresses in use at compsci in PmB can be found on the name server
eagle.und.ac.za

It is not easy to remember these numerical addresses, therefore names can been
assigned to each address. For example, our domain name is cs.unp.ac.za: the
ac stands for “academic” and za is the country code. The domain name must be
registered by a central registry in the USA. In the United States, the domain names
do not contain the country code and have the following suffixes:

• com - COMmercial

• edu - EDUcation

• gov - GOVernment

• net - NETwork

• org - ORGanization

Other countries have their own country codes: United Kingdom - uk, France - fr,
etc. The node names can be chosen at will by the network manager. For example,



30 CHAPTER 1. INTRODUCTION TO UNIX

our machine has been called mars, so instead of specifying its numerical address,
143.128.82.4, it is easier to remember mars.cs.unp.ac.za.

Although people use these easy to remember names, machines actually need the
numerical address. A computer which can translate an alphabetical address to a
numerical address and vice versa is called a nameserver.

1.5.6 Gateways and Routers

A machine which connects a LAN to the Internet is called a gateway. The gateway
machine is responsible for routing packets which are destined for a domain outside
the local domain. These machines are called routers. Our gateway used to be a
PC running a public domain program called PCROUTE. This PC has now been
replaced by a commercial CISCO router doing the same job, but much faster.

1.5.7 Telnet

A basic Internet service is the provision of interactive login to a remote host. Telnet
is both a protocol and a program that enables you to do so. It is the standard
TCP/IP remote login protocol.

You must know the address of the remote host computer before you can initiate a
session with telnet. Once you know the address, you can use telnet. Most remote
hosts require you to have an account to log in (you must have a user id and a
password). However, some remote hosts do not require that users have accounts.
Users can log in with a general user id such as info (or some other word that is
published in guides to the Internet). Passwords are usually not required.

If you are in telnet mode (i.e., the telnet > prompt is on the screen and you want
to return to the UNIX prompt without initiating an interactive session, type quit

and press return.

1.5.8 Anonymous ftp

A great deal of useful information is stored in files at computers throughout the
country and the world. Many of these file are freely available to users of the Internet.
A simple method for transferring such files from a remote computer to a users
computer is anonymous ftp. Anonymous ftp allows a user to transfer files without
having an account at the remote computer (i.e. the user is anonymous.)

To access an anonymous ftp site you must know the address of the site. For example,
ftp.sun.ac.za, is the address of the Stellenbosch University ftp server. To connect
to this server, for example, type:



1.5. NETWORKING AND THE INTERNET ON UNIX MACHINES 31

ftp ftp.sun.ac.za

You will be asked for your username; type anonymous. As a password, type your
e-mail address, e.g. jones@mars.cs.unp.ac.za. Once you have gained access to
the site, the ftp > prompt returns and acknowledges that the system is ready to
use.

Once you have accessed the ftp site, to transfer a file, you may have to change di-
rectories to the directory that your file is located in. Many sites store public access
files in a directory called pub. To access this directory you would type cd pub at
the ftp > prompt. It is a good idea to list the contents of the directory before
attempting to transfer a file. This is done by ls at the ftp > prompt. When you
have determined that the file you want to retrieve is there, you can transfer it to
your computer using the get command. Before you do this, however, you need to
know whether the file you are transferrin is an ASCII file or a binary file. It is nearly
always safe to transfer in binary mode, and most ftp sites have this as the default
mode. To be on the safe side, you should enforce binary mode transfer. Here is how
you would transfer the file foo:

ftp > binary

200 Type set to I.

ftp > get foo

200 PORT command successful.

150 Opening BINARY mode conection for foo (137 bytes).

226 Transfer complete.

137 bytes received in 2.37 seconds (0.3 Kbytes/s).

ftp >

The commands that can be used within ftp are the same, or similar, to the UNIX
commands which do the same thing. Here is a list of the most commonly used
commands:

ls: lists the contents of the active directory.

cd foo: enables the user to change to directory foo.

cd ..: allows the user to return to the previous directory.

lcd foo: changes to directory foo on the local machine.

binary: chnages to binary mode transfer.

axcii: changes to ASCII mode transfer.

get foo: transfers file foo to the local machine.

mget *: transfers all files to the local machine.

put foo: transfers file foo from the local machine.



32 CHAPTER 1. INTRODUCTION TO UNIX

mput *: transfers all files in the local machine.

When using mput or mget, you are prompted after each file. To avoid this, you
should start your ftp session with the command:

ftp -i ftp.sun.ac.za

To view a document, foo, while still connected to the ftp site, type:

ftp > get foo | less



Chapter 2

Operating Systems Theory

2.1 Process Synchronization

A process is a program whose execution has started but not yet terminated. At any
one moment a process need not be actually executing.

Three possible states for a process are:

• Running: the process is executing on a processor.

• Ready: the process is ready to execute but all the processors are in use.

• Blocked: the process is waiting for some event to occur before it can continue
with its execution.

An operating system must maintain a data structure that describes the current
status of all live processes. This structure is called a process control block or pcb and
commonly contains the following fields:

• Name: an identifier for the process.

• State: running, ready or blocked.

• Re-Start Info: program counter, register contents, interrupt masks, etc.

• Priorities: for deciding who gets the resources next.

• Permissions for access control of resources.

• Ownerships: list of resources currently held by process.

• Accounting: time used, memory held, I/O volume logged, etc.

During the life of any particular process an operating system must perform oper-
ations that can result in a change to the information in the PCB of the process.
Typical operations include:

33



34 CHAPTER 2. OPERATING SYSTEMS THEORY

• Create: start a new PCB.

• Delete: remove a PCB.

• Signal: Indicate that a specific event has occured.

• Wait: Stop execution until an event is signaled.

• Schedule: Assign a runable process to an available processor.

• Change-Priority: to influence future resource acquisition rights.

• Suspend: either suspend-ready or suspend-blocked depending on the current state
of the process.

• Resume: change suspend-ready to ready or suspend-blocked to blocked.

2.1.1 Common synchronization problems

A set of processes is called determinate if given the same input, the same results are
produced regardless of the order of execution of the processes. Determinate systems
are easy to control, the operating system can let them execute in any order and the
results are always the same. However in real life sets of processes are usually not
determinate and the operating system must synchronize their execution in order
that a prefered result is attained. Some common synchronization problems are:

• Mutual exclusion problem: In many computer systems, processes must coop-
erate with each other when accessing shared data. The designer must ensure
that only one process at a time modifies the shared information. During the
execution of such critical sections of code mutual exclusion must be ensured.

• Producer-Consumer problem: In this problem a set of producer processes pro-
vide messages to a set of consumer processes. They all share a common pool
of space into which messages may be placed by the producers and removed by
the consumers.

• Reader-Writer problem: In this problem reader processes access shared data
but do not alter it while writer processes change the contents of the shared
data. Any number of readers should be allowed to proceed concurrently in the
absence of a writer, but writers must insist on mutual exclusion while in their
critical section.

It turns out that if one can solve the mutual exclusion problem then all the other
common sychronization problems are solvable. First we will examine some historical
attempts to solve the mutual exclusion problem via software then we will introduce
the hardware concept of a semaphore which provides a modern solution.



2.1. PROCESS SYNCHRONIZATION 35

2.1.2 Mutual exclusion

Consider a system of two cooperating processes P0 and P1. Each process has a
segment of code, called a critical section, in which the process may be reading or
writing common variables. The important feature of such a system is that when one
process is executing in its critical section the other process must be prevented from
executing its critical section. We say that the execution of critical sections must be
mutually exclusive in time.

To solve the mutual exclusion problem we must design a protocol which the process
must use to cooperate and ensure mutual exclusion. Each process must request
permission to enter its critical section by executing socalled entry code and after
completing its critical section must execute exit code so that the next process can
enter its critical section. The following constraints must be observed by any practical
mutual exclusion solution.

1 Only basic machine language instructions are atomic.

2 No assumptions may be made concerning the relative execution speeds of the
cooperating processes.

3 When one process is in a non-critical section of code it may not prevent the
other process from entering its critical section.

4 When both processes want to enter their critical section the decision about
which one to grant access to cannot be postponed indefinately.

Our first attempt at a solution to the mutual exclusion problem with constraints is
to let both processes share a common variable called turn initialized to 0 or 1, and
then use the protocol that if turn = i then process Pi is allowed to execute in its
critical section. Each cooperating process would loop as follows:

program P(i)

common variable: turn: 0..1 = 0;

repeat

while turn <> i do nothing;

critical section

turn = j;

non-critical section

until false;



36 CHAPTER 2. OPERATING SYSTEMS THEORY

This solution ensures that only one process at a time can be in its critical section,
however, constraint number 3 is not satisfied since strict alternation of processes in
the execution of thier critical section is required.

The problem with this attempted solution is that it fails to remember the state of
each process but remembers only which process is next. To remedy the situation
we could use a common flag for each process. The idea is for a process to set its
flag before entering its critical section and only do this if the other process’s flag is
unset. The cooperating processes would loop as follows:

program P(i)

common variables:

flag: array[0..1] of boolean = {false, false};

repeat

while flag[j] do nothing;

flag[i] = true;

critical section

flag[i] = false;

non-critical section

until false;

Unfortunately this algorithm does not ensure mutula exclusion. Consider the fol-
lowing sequence of events:

P0 enters the while statement and finds flag[1]=false.

P1 enters the while statement and finds flag[0]=false.

P1 sets flag[1]=true and enters its critical section.

P0 sets flag[0]=true and enters its critical section.

This sequence of events allows P0 and P1 to enter their critical sections at the same
time and mutual exclusion is not ensured. The problem is with the non-atomic
nature of the entry code. It does not help to interchange the order of the assignment
and the while loop in the entry code since in that case both processes may exclude
each other indefinately and thus violate constraint number 4.

It appears that no simple solution to the mutual exclusion problem exists but a
correct solution was discovered in 1964 by the dutch mathematition, Dekker. This
solution combines both of the previous attempts as follows:



2.1. PROCESS SYNCHRONIZATION 37

program P(i)

common variables:

flag: array[0..1] of boolean = {false, false};

turn: 0..1 = 0;

repeat

flag[i] = true;

while flag[j] do

if turn = j then

begin

flag[i] = false;

while turn = j do nothing;

flag[i] = true;

end;

critical section

turn = j;

flag[i] = false;

non-critical section

until false;

We leave it to the reader to convince himself that Dekker’s solution ensures mutual
exclusion and that indefinite blocking cannot occur.

When more that two processes are involved in the mutual exclusion problem the
solution is more complicated. In 1965 another Dutch mathematition, Dijkstra solved
the n process problem. His solution was refined by Knuth and then DeBruijn, and
finally by Eisenberg and McGuire in 1972 to produce the following n process solution
that satifies not only all the constraints 1 to 4, but is also fair in the sense that every
process can eventually enter its critical section even if access requirements are greater
than total time allows.

program P(i)

common variables:

flag: array[0..n-1] of (idle, want, in) = {idle, ...};

turn: 0..n-1 = 0;

ordinary variables:

j: integer;

repeat

repeat



38 CHAPTER 2. OPERATING SYSTEMS THEORY

flag[i] = want;

j = turn;

while j <> i do

if flag[j] <> idle then

j = turn

else

j = j+1 mod n;

flag[i] = in;

j = 0;

while ( j<n ) and ( j=i or flag[j]<>in ) do inc(j);

until (j >= n) and ( turn = i or flag[turn] = idle);

turn = i;

critical section

j = turn+1 mod n;

while (j<>turn) and (flag[j] = idle) do j = j+1 mod n;

turn = j;

flag[i] = idle;

non-critical section

until false;

We leave it to the reader to convince himself that the Eisenberg and McGuire solution
ensures mutual exclusion and that indefinite blocking cannot occur.

2.1.3 Semaphores

In modern computer instruction sets, the problem of entry and exit code for the
mutual exclusion is solved by supplying an atomic instruction that does the job.
The data structure associated with this instruction is called the semaphore and a
full definition is as follows:

A semaphore is an integer variable, S, and an associated group of waiting processes,
Q(S), upon which only two operations, P and V , may be performed.

P (S) if S ≥ 1 then S = S − 1 else the executing process places itself in Q(S) and
goes to sleep.

V (S) if Q(S) is non-empty then wake up one waiting process and make it available
for execution else S = S + 1.

The operating system must offer P and V as indivisible instructions. This means
that once they start executing they cannot be interrupted until they have com-
pleted. Note also that in the definition of V (S), no rules are laid down to identify



2.1. PROCESS SYNCHRONIZATION 39

which waiting process is reactivated. In most operating systems this decision is
implementation dependent.

To solve the mutual exclusion problem using a semaphore the following scheme can
be used:

shared vars: S: semaphore = 1;

Process i: Process j:

loop loop

... ...

P(S) P(S)

... ...

critical section critical section

... ...

V(S) V(S)

... ...

non-critical section non-critical section

... ...

endloop endloop

To see that this scheme will work consider the following two senarios:

1: Process i goes in and out of its critical section while processes j, k, ... do
not attempt entry. That is: S = 1; i : P (S), S = 0; i enters; i:V(S), S = 1;
i exits; and the initial configuration is restored.

2: Prosess i goes in, j attempts entry and k, l, ... are not interested. That
is: S = 1; i : P (S); S = 0; i enters; j : P (S); j waits; i : V (S); i exits, j

enters; j : V (S); S = 1; j exits; and the initial configuration is restored.

2.1.4 Producer/Consumer problem via semaphores

In this problem we have many producers producing messages which are consumed
by many consumers. Howeve, there are only a finite number of message buffers:

shared vars: nrfull: semaphore = 0

nrempty: semaphore = N

mutexP: semaphore = 1

mutexC: semaphore = 1

buff: array [0..N-1] of message

in, out: 0..N-1 = 0

producer i: consumer j:



40 CHAPTER 2. OPERATING SYSTEMS THEORY

loop loop

... ...

create a message m

P(mutexP) P(mutexC)

{one producer at a time} {one consumer at a time}

P(nrempty) P(nrfull)

{wait for an empty cell} {wait for a message}

buff[in] = m m = buff[out];

in = in + 1 mod N out = out + 1 mod N

V(nrfull) V(nrempty)

{signal a full cell} {signal an empty cell}

V(mutexP) V(mutexC)

{let the next producer in} {let next consumer in}

... consume message

endloop endloop

2.1.5 Reader/Writer problem via semaphores

In this problem we have a number of writer programs that must exclude all readers
and other writers when in their critical section. We also have a number of reader
routines who can perform their read operations concurrently but writer routines
must be excluded. The following semaphore solution gives priority to the readers:

shared vars: mutexW, mutexR: semaphore = 1

nr: integer = 0

reader i: writer j:

loop loop

... ...

P(mutexR) P(mutexW)

{readers enter one at a time} {wait}

if nr=0 then P(mutexW) critical section

{first reader inhibits writers} for writers

nr = nr+1

V(mutexW)

{signal}

V(mutexR)

{allow other readers in/out} endloop



2.1. PROCESS SYNCHRONIZATION 41

critical reader section

P(mutexR)

{readers exit one at a time}

nr = nr-1

if nr=0 then V(mutexW)

{last out allows writers in}

V(mutexR)

{allow other readers in/out}

endloop

2.1.6 Exercises

1: Use a semaphore with P and V operations to control the trafic flow at the
intersection of two one-way streets. The following rules should be satisfied:

– Only one car can be crossing at any given time.

– When cars are approaching the intersection from both directions they
should take turns at crossing so as to prevent indefinite postponements
in either street.

– A car approaching from one street should always be allowed to cross the
intersection if there are no cars approaching from the other street.

A solution to this problem is two algorithms for crossing. One algorithm for
cars comming from one direction and another algorithm for cars comming from
the other direction.

2: Consider a barbershop that has three barber chairs, three barbers, one till,
and one cashier. The shop also contains a sofa that can seat four waiting
customers, and standing room area for further waiting customers. Assume that
at most twenty customers can be inside the barbershop at any one time.

A customer enters the shop, provided it is not full and once inside takes a seat
on the sofa or stands if the sofa is fully occupied. When a barber is free the
customer who has been on the sofa for the longest is served and if there are any
standing customers the one who has been in the shop the longest takes a seat
on the sofa. Whan a customer’s haircut is finished the cashier accepts payment
and gives the customer his recipt. Because there is only one till payment is
accepted for one customer at a time. The barbers divide their time between
cutting hair and sleeping in their barber chair if there are no customers to be
served.

Solve this concurrency problem by writing three algorithms. One each for
customers, barbers and cashiers. Make a table of all the semaphores you use
indicating what the P and V operations denote for each.



42 CHAPTER 2. OPERATING SYSTEMS THEORY

3: There are five philosophers sitting at a round table. On the table are five
plates, five forks (one to the left of each plate), and a bottomless serving bowl
of spaghetti at the center of the table. The philosophers spend their time either
thinking or eating. Thinking is easy as the philosopher does not require any
utensils to do it. Eating on the other hand requires two forks, one from the
left and one from the right. On completion of an eating period the philosopher
will replace the two forks in their original positions and return to thinking.

Design an algorithm for a philosopher to follow that allows all philosophers to
think and eat to their hearts content.



2.2. INTERPROCESS COMMUNICATION UNDER UNIX 43

2.2 InterProcess Communication under UNIX

UNIX now offers new powerful interprocess communication (IPC) facilities. These
include message queues, shared memory segments and semaphores. In this section we
show how to call UNIX IPC routines to implement shared memory and semaphores.
UNIX offers two shell commands to monitor the current IPC state and to delete
unwanted IPC structures. The formats are:

ipcs [options]

ipcrm [options]

Use the man pages to get information on the available options.

To tackle the group project given later in this document, you will have to implement
shared memory and semaphores in C++. Make sure you can write simple C++
programs before you start with IPC.

2.2.1 Shared Memory

Shared memory is a section of main computer memory which can be shared by one
or more independent processes. Shared memory is attached to the data segment of
a process and can appear at a different address in each process. Shared memory
accesses by different processes must be synchronized through the use of semaphores.

UNIX provides the system call shmget to create a shared memory segment along
with its associated data structures. The segment is then attached to a processes
address space through the use of the system call, shmat. shmget returns the shared
memory identifier shmid which is later used by the system call shmctl to update
the contents of shared memory. The system call, shmdt is used to detach a shared
memory segment from a processes address space.

Full specifications for the above system calls can be found in the man pages. A
sample program, written in C, (the source of which can be downloaded from my
web site) shows you how to create and use a shared memory segment.

2.2.2 Semaphores

UNIX supplies a system call, semget to set up a semaphore with its associated
data structure. semget returns a unique positive integer known as the semaphore
identifier, semid. The semid is subsequently used by the semop system call which
updates the values in the semaphore data structure.

The UNIX semaphore structure contains the variables, semval, semzcnt and sempid.
The variable semval is a non-negative integer whose value is changed by the semop



44 CHAPTER 2. OPERATING SYSTEMS THEORY

system call. semval corresponds to the semaphore integer described above in these
notes. semzcnt is an unsigned short integer that represents the number of processes
that are suspended waiting for semval to reach zero. sempid holds the id of the
process that performed the last semaphore operation on this semaphore.

Full specifications for semget and semop can be found in the man pages. A sample
program, written in C, (the source of which can be downloaded from my web site)
shows you how to create and destroy a semaphore and also how to implement the P

and V mutual exclusion operators.

The above sample codes will help you solve IPC problems. To get a nice window
like interface on aa ascii terminal, it is advisable to learn the ncurses library. This
library offers a host of system calls that allows you to obtain keystrokes from the
user and update an ascii terminal screen as appropriate to your application. Further
documentation on ncurses can be found on the web. A sample program, written in
C++, (the source of which can be downloaded from my web site) shows you how to
implement a simple ncurses program.



2.2. INTERPROCESS COMMUNICATION UNDER UNIX 45

2.2.3 Pair Project 2010: two-player maze game:

Consider a two-player mazeGame.

Players should try to navigate the maze from start to goal as quickly as possible. The
first player to reach the goal wins the game. Invent your own rules for navigating
the maze. (such as no two players may be in the same position at the same time).
Your program must make sure that the players do not make illegal moves when
navigating the maze.

Make use of ncurses, semaphores and shared memory to construct the mazeGame.
Create one code for each player to execute. When either player makes a move the
move must reflect on both player’s code. ie: communication must take place. Make
sure that you clearly specify all shared memory data with their initial values.



46 CHAPTER 2. OPERATING SYSTEMS THEORY

2.3 Deadlock

At the end of the previous section we saw that a simple sychronization algorithm
can end up in a deadlocked state when more than one processes are competing for a
few resources.

2.3.1 A definition for deadlock

A set of processes is in a state of deadlock when every process in the set is waiting
for a resource that can only be released by another process in the set.

A deadlock situation may arise iff the following necessary condition holds:

• circular hold and wait: There must exist a set of waiting processes {p1, p2, . . . , pn}
such that p1 is waiting for a resource held by p2, p2 is waiting for a resource that
is held by p3, . . ., pn is waiting for a resource that is held by p1. The resources
involved must be held in a non-sharable mode.

2.3.2 Resource Allocation Graphs

Deadlocks can be described more precisely in terms of a directed bipartite graph
G(V, E), called a resource allocation graph, where the set of vertices V is partitioned
into two types, P = {p1, p2, . . . , pn} the set of processes and R = {r1, r2, . . . , rm}
the set of resource types.

Each element in the set E of edges is an ordered pair (pi, rj) or (rj, pi). If (pi, rj) ∈ E
then there is a directed edge from process pi to resource type rj indicating that
process pi has requested an instance of resource type rj and is currently waiting for
that resource. If (rj, pi) ∈ E then there is a directed edge from resource type rj

to process pi indicating that an instance of resource type rj has been allocated to
process pi. These edges are called request edges and assignment edges respectively.

Pictorally we represent each process pi as a circle and each resource type as a square.
Since a resource type rj may have more than one instance we represent each such
instance as a dot within the square. A request edge points to a square while an
assignment edge starts at one of the dots and points to a circle.

When a request edge is fulfilled it is instantaneously transformed into an assignment
edge which is deleted when the resource is released.

Here are some facts about resource allocation graphs:

• If G contains no cycles then no process in the system is deadlocked.

• If G contains a cycle then a deadlock may exist.



2.3. DEADLOCK 47

• If each resource type has exactly one instance then a cycle implies that a dead-
lock has occurred.

• If any resource involved in a cycle has more than one instance then the cycle
does not necessarily imply a deadlock.

• A system is deadlocked iff when resources are partitioned according to instances
there is no way to draw request edges without introducing a cycle.

2.3.3 Resource allocation examples



48 CHAPTER 2. OPERATING SYSTEMS THEORY

2.3.4 Deadlock Prevention

The only way to prevent deadlock from occuring is to ensure that a circular hold
and wait condition never occurs. We will investigate three methods for doing this:

Prevention by Preemption

To prevent the hold and wait condition we allow implicit preemption. If a process
that is holding some resources requests another resource that cannot be immedi-
ately allocated to it then all resources currently held are preempted and implicidly
released. The preempted resources are added to the list of resources for which the
process is waiting. The process will only be restarted when it can regain all its old
resources as well as the new one that it requested.

This is not the best deadlock prevention scheme available. For example if a line
printer is continually preempted the the operator whould have a terrible time sorting
out which printed pages belonged to which process.

Prevention by Linear Ordering of Resources

In order to ensure that the circular hold and wait condition never happens one can
impose a linear ordering of all resource types. To do this one must define a 1 − 1
function F that maps resource types to integer numbers. For example suppose our
resource types are card readers, disk drives, tape decks and line printers and:

F (cr) = 1

F (dd) = 5

F (td) = 7

F (lp) = 12

and suppose that we insist that each process can only request resources in increasing
order of enumeration. To do this we require that whenever a process requests a
resource rj it first releases any resource ri such that F (ri) > F (rj). If this protocol
is followed then a circular hold and wait condition cannot happen.

To see this assume that a circular hold and wait condition exists with {p0, p1, . . . , pn−1}
involved. Assume that pi is waiting for resource ri which is held by pi+1, (mod n on
all the indecies). Thus since pi+1 is holding ri while requesting ri+1 we must have
F (ri) < F (ri+1 for all i. In other words: F (r0) < F (r1) < F (r2) < . . . < F (rn−1) <
F (r0). This is a contradiction and thus the circular hold and wait cannot exist if
the protocol is adhered to.



2.3. DEADLOCK 49

The Banker’s Algorithm

The following deadlock prevention scheme ensures that a circular hold and wait
condition cannot occur by demanding that at any time the system is in a safe state.
More formally, a system of processes is in a safe state if there exists a sequence,
{p0, p1, . . . , pn−1} such that for each pi the resources which pi can still request can
be satisfied by the available resources plus the resources held by all the pj with j < i.

To check whether or not a collection of processes is in a safe state the operating
system must maintain several data structures containing the current state of resource
allocations.. Let n be the number of processes and m the number of resource types.
The banker’s algorithm will require the following data structures:

• Available: A vector of length m with Available[j] = k if there are currently k
instances of resource type rj available.

• Max: An n×m matrix defining the maximum demand for each resource type by
each process. If Max[i, j] = k then process pi may request at most k instances
of resource type rj.

• Allocation: An n × m matrix defining the number of resources of each type
currently allocated to each process. If Allocation[i, j] = k then process pi is
currently allocated k instances of resource type rj.

• Need: An n × m matrix indicating the remaining need of each process. If
Need[i, j] = k then process pi may need k more instances of resource type rj in
order to complete its task. Note that Need[i, j] = Max[i, j]− Allocation[i, j].

Given that the above data structures are kept up to date by the operating system,
the algorithm for checking whether or not the system is in a safe state is quite simple:

1: Let Work and Finish be vectors of length m and n respectively. Initialize
Work = Available and Finish[i] = False for all i.

2: Find an i such that:

a: Finish[i] = False

b: Need[i] ≤ Work

If no such i exists then goto step 4.

3: Set:

a: Work = Work + Allocation[i]

b: Finish[i] = True

and goto step 2.

4: if Finish[i] = True for all i then state is safe.



50 CHAPTER 2. OPERATING SYSTEMS THEORY

Now to complete the banker’s algorithm we must specify what is to be done when
a request for resources comes in from process pi. Suppose pi issues a request vector
Request[i] with Request[i, j] = k if process pi wants k more instances of resource
type rj. The operating system must then take the following action:

1: If Request[i] > Need[i] then we have an error since the process has requested
more resources than initially allowed for in Max[i].

2: If Request[i] > Available the process pi must wait.

3: The operating system pretends to allocate the resources as follows:

a: Available = Available−Request[i].

b: Allocation[i] = Allocation[i] + Request[i].

c: Need[i] = Need[i]−Request[i]

If the resulting resource state is safe then the allocations are made and the
process pi continues. If the new state is unsafe then pi must wait and the old
state is restored.

2.3.5 Exercise

1) Consider the following resource allocation data for five processes competing for
four resource types.

Available = 1 5 2 0 Max =

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

Allocation =

0 0 1 2
1 0 0 0
1 3 5 4
0 6 3 2
0 0 1 4

Need =

0 0 0 0
0 7 5 0
1 0 0 2
0 0 2 0
0 6 4 2

a) Show that this system in a safe state?

b) If a request, [0, 4, 2, 0], comes in from the second process, will the operating
system grant it?



2.4. SCHEDULING 51

2.4 Scheduling

2.4.1 Introduction

CPU scheduling deals with the problem of deciding which of the processes in the
READY queue is to be allocated the CPU. The criteria used for comparing different
CPU scheduling algorithms include:

• Utilization: The idea is to keep the CPU as busy as possible. In real systems
CPU utilization could vary from 40 to 90 percent.

• Throughput: One way to measure the work done by the CPU is to count the
number of tasks that are completed per unit of time.

• Turnaround Time: The interval of time from submission to completion. In-
cludes, waiting time, executing time and I/O time.

• Waiting Time Some scheduling algorithms just try to minimize the waiting
time rather than the complete turnaround time.

• Response Time: The time from submission of a request until the first response
is produced. Often used as a criteria in interactive systems.

In most case an average measure is minimized.

2.4.2 F.C.F.S. Scheduling

By far the simplest scheduling algorithm is First-Come-First-Served. The imple-
mentation is easily managed with a First-In-First-Out READY queue.

The performance of FCFS is however often quite poor. Consider the following three
tasks with known CPU burst times. We can compute the average turnaround time
to service these three CPU bursts:

Task Burst Time
T1 24
T2 3
T3 3

If the tasks arrive in the order 1, 2 and 3 to a FCFS scheduler then the average
turnaround time can be computed with the aid of a Gantt chart.

T1 T2 T3

and the Average turn-around time, or ATT , can be computed as:

ATT =
24 + 27 + 30

3
= 27



52 CHAPTER 2. OPERATING SYSTEMS THEORY

On the other hand, if the tasks arrive in the reverse order, 3 then 2 then 1, a much
better result is obtained.

T3 T2 T1

ATT =
3 + 6 + 30

3
= 13

Thus we conclude that the average turnaround time for FCFS scheduling is not in
general minimal.

In addition consider the performance of FCFS in a dynamic situation. Assume 1
CPU bound tasks and many I/O bound tasks. The following scenario often results:

• The CPU bound task gets the CPU and holds it. The I/O bound tasks all wait
for the CPU in the READY queue. The I/O tasks are IDLE.

• The CPU task finishes and moves to an I/O device. All the I/O tasks finish
quickly and now wait in the I/O queue. The CPU is now IDLE.

There is a convoy effect as these two situations repeat resulting in plenty of IDLE
time. The way around this problem is to allow shorter tasks to go first!

2.4.3 S.T.F. Scheduling

In Shortest-Task-First scheduling the CPU is assigned to that task with the smallest
next CPU burst time. For example:

Task Burst Time
T1 6
T2 3
T3 8
T4 7

T2 T1 T4 T3

ATT =
3 + 9 + 16 + 24

4
= 13

Theorem

STF scheduling is optimal in that it yields the minimum average waiting time.

Proof (due to P. Somaroo, 1995.)



2.4. SCHEDULING 53

Let the execution time for task Ti be denoted as ti then:

AWT = 0+t1+(t1+t2)+···+(t1+t2+···+tn−1)
n

= (n−1)t1+(n−2)t2+···+2tn−2+tn−1

n

which is minimised if ti < tj whenever i < j since ti has a larger weight than tj.
Q.E.D.

Although STF is optimal in the shortest waiting time sense, it is unimplementable.
There is no way that the operating system knows the length of the next CPU burst
time.

One approach is to try and approximate STF scheduling. We try to predict the
length of the next CPU burst by considering the burst time history of the task.

For example let tn be the length of the nth CPU burst and let τn be our predicted
value for the nth CPU burst. Then let

τn+1 = αtn + (1− α)τn

where α is a parameter satisfying 0 ≤ α ≤ 1 which controls the relative weight of
recent and past history in our prediction.

If α = 0 then τn+1 = τn and our estimate never changes. If α = 1 then τn+1 = tn and
only the most recent CPU burst time is taken into account. However if 0 < α < 1
then the following expansion shows how past history is incorporated.

τn+1 = αtn + (1− α)αtn−1 + (1− α)2αtn−2 + · · ·

We see that each successive term has less weight than its predecessor. Note that the
initial τ0 can be a system constant.

2.4.4 Priority Scheduling

In this type of scheduling a priority is associated with each task and the CPU is
allocated to the task with the highest priority. Equal priority tasks are scheduled
according to FCFS. Note that STF scheduling is just priority scheduling with the
priority set to 1

τ
.

Priorities can be defined either internally or externally.

Internal priority algorithms will use factors such as, time limits, memory require-
ments, number of open files and ratio of I/O to CPU bursts to compute the priority
of a given task.

External priority algorithms will use factors such as, funds, sponsers and politics to
allocate priorities.



54 CHAPTER 2. OPERATING SYSTEMS THEORY

A major problem with priority scheduling is starvation A priority scheduling al-
gorithm can leave some low priority task waiting indefinitely. A solution to this
problem is aging. Gradually increase the priority of a task that stays in the system
for a long time.

Rumor has it that when they closed down the IBM 7094 at MIT in 1973 they found
a low-priority task that had been submitted in 1967.

2.4.5 Preemptive Scheduling

FCFS, STF and PRIORITY scheduling algorithms are non-preemptive by nature.
Once the CPU has been allocated to a process it stays allocated until the process
releases the CPU, (either by terminating or by requesting I/O).

FCFS is intrinsically non-preemptive but the other two can be modified to be pre-
emptive algorithms. For example if a new task arrives in the queue with a shorter
expected burst-time (or a higher priority) than the currently executing task, then
the currently executing task is preempted and the new task is assigned to the CPU.

Consider the following example:

Task Arrival Time Burst Time
T1 0 8
T2 1 4
T3 2 9
T4 3 5

Using a preemptive scheduling algorithm results in:

T1 T2 T4 T1 T3

ATT =
17 + 4 + 24 + 7

4
= 13

where as for a non-preemptive schedule we have the following situation:

T1 T2 T3 T4

ATT =
8 + 11 + 19 + 23

4
= 15

1

4

We see that preemption results in an improved turn-around time. However it must
be noted that preemption has a roll-out roll-in overhead which has not been reflected
in the above calculations:



2.4. SCHEDULING 55

2.4.6 Round Robin Scheduling

A Round Robin scheduling algorithm is usually used for time sharing systems. A
small unit of time, called a time-slice is defined. The READY queue is treated as
a circular queue and the CPU scheduler goes around the READY queue allocating
the CPU to each process for one time-slice.

For example:

Task Burst Time
1 24
2 3
3 3

A Round Robin schedule with a time-slice of 4 is:

T1 T2 T3 T1 T1 T1 T1 T1

ATT =
30 + 7 + 10

3
= 15

2

3

Note that an infinite time-slice is equivalent to FCFS scheduling while a very small
time slice is equivalent to each process running on its own processor at 1

n
the speed

of the real processor. Again there are overheads with roll-out that have not been
taken into account.

2.4.7 Scheduling Tasks on more than one Processor

In this section we investigate algorithms for scheduling tasks on more than one
processor. We assume that the tasks are independent and can run in any order
we wish. However, once a task starts it must run to completion so we will not be
looking at preemptive algorithms in this section. When processing on more than
one processor the measure that is usually optimized is the total throughput time.
No optimal algorithm is known for minimizing total throughput time. We will
investigate one heuristic algorithm.

We define the largest processing time schedule, or LPT schedule, as the result of
an algorithm which, whenever a processor becomes free, assigns that task whose
execution time is the largest of those tasks not yet assigned.. For cases when there
is a tie, an arbitrary tie-breaking rule can be employed. Consider the following
example:



56 CHAPTER 2. OPERATING SYSTEMS THEORY

Task Processing Time
T1 6.5
T2 4
T3 3.5
T4 3
T5 2
T6 1
T7 1

An LPT schedule for this set of tasks on 3 processors turns out to be an optimal
schedule for 3 processors:

1 2 3 4 5 6 7 8
P1

P2

P3

We see that processor 1 finishes last and the total throughput time for the set of
tasks scheduled in this way is:

t(LPT ) = 7.5

The LPT schedule is not always an optimal schedule. Consider the following exam-
ple on 3 processors:

Task Processing Time
T1 8
T2 6.5
T3 6
T4 4
T5 3
T6 2.5
T7 2.5
T8 1

An LPT schedule for this set of tasks has a total throughput of 12.

1 2 3 4 5 6 7 8 9 10 11 12
P1

P2

P3

t(LPT ) = 12

whereas an optimal schedule, an OPT schedule, has a total throughput time of 11.5.



2.4. SCHEDULING 57

1 2 3 4 5 6 7 8 9 10 11 12
P1

P2

P3

t(LPT ) = 11.5

Just how good is LPT scheduling as compared to an optimal schedule? After a cer-
tain amount of experimentation about the possible shortcomings of an LPT schedule
one usually arrives at the following example for the case of 2 processors:

Task Processing Time
T1 3
T2 3
T3 2
T4 2
T5 2

A 2 processor LPT schedule for this set of tasks has a total throughput of 6.5

1 2 3 4 5 6 7
P1

P2

whereas the OPT schedule has a total throughput of 6.

1 2 3 4 5 6 7
P1

P2

Constructing LPT and OPT schedules for the following set of tasks gives a worst
case scenario when 3 processors are involved:

Task Processing Time
T1 5
T2 5
T3 4
T4 4
T5 3
T6 3
T7 3

For the worst case scenario on m processors consider 2m + 1 tasks with ti =
2m − Floor( i+1

2
) for i = 1, 2, . . . , 2m and with t2m+1 = m. It can be verified by

constructing Gannt charts of the LPT and OPT schedules that:

t(LPT )

t(OPT )
=

4

3
− 1

3m



58 CHAPTER 2. OPERATING SYSTEMS THEORY

The main result of this subsection is a generalization of the preceeding result:

Theorem

Given any set of independent tasks and m identical processors:

t(LPT )

t(OPT )
≤ 4

3
− 1

3m

Proof

The theorem is trivally true for m = 1 since in that case t(LPT ) = t(OPT ). So let
m ≥ 2.

Assume the theorem is false. Contrary to the theorem assume that we have a
minimal set of tasks, {T1, T2, · · · , Tn}, with execution times, {t1, t2, · · · , tn} and
assume that the tasks are ordered so that t1 ≥ t2 ≥ · · · ≥ tn. With these assumptions
the LPT schedule will allways assign the tasks in numerical order.

Now assume that Tk finishes last in the LPT schedule with k < n. then an LPT
schedule for the set of tasks {T1, T2, · · · , Tk} would complete at the same time as an
LPT schedule for the tasks {T1, T2, · · · , Tn} and this smaller set of tasks would also
invalidate our theorem. But we assumed that our n tasks was a minimal set so we
have a contradiction and can safely assume that k = n and Tn finishes strictly last
in the LPT schedule for {T1, T2, · · · , Tn}.

We shall now show that any OPT schedule for {T1, T2, · · · , Tn} can have at most
two tasks per processor. First we note that

t(OPT ) ≥ 1

m

n∑
i=1

ti

Now let τn denote the starting time of Tn in an LPT schedule for {T1, T2, · · · , Tn}.
Since no processor can be idle before Tn begins execution we have:

τn ≤
1

m

n−1∑
i=1

ti

and hence:

t(LPT )

t(OPT )
=

τn + tn
t(OPT )

≤ tn
t(OPT )

+
1

mt(OPT )

n−1∑
i=1

ti



2.4. SCHEDULING 59

≤ (m− 1)tn
mt(OPT )

+
1

mt(OPT )

n∑
i=1

ti

≤ (m− 1)tn
mt(OPT )

+ 1

and since the theorem does not hold for {T1, T2, · · · , Tn} we have:

4

3
− 1

3m
<

(m− 1)tn
mt(OPT )

+ 1

from which we obtain:

t(OPT ) < 3tn

.

Therefore, since Tn has the least execution time we conclude that if the theorem is
violated then no processor can execute more than two tasks in an optimal schedule
for {T1, T2, · · · , Tn}

To complete the proof we will show that a two task at most per processor OPT
schedule can be transformed into an LPT schedule without increasing the total
throughput time which contradicts our assumption that the theorem was invalid.

Consider the following four types of transformations on schedules:

Type A:

Pi

Pj
−→ Pi

Pj

Type B:

Pi

Pj
−→ Pi

Pj

Type C:

Pi −→ Pi

Type D:



60 CHAPTER 2. OPERATING SYSTEMS THEORY

Pi

Pj
−→ Pi

Pj

To turn an OPT schedule into an LPT schedule without increasing the total through-
put time we first employ type A and C transforms to ensure that the m longest tasks
are scheduled first with the longest on processor 1 and the mth longest on processor
m. We then employ transforms of type A and B to ensure that the (m+1)th longest
task is scheduled second on processor m while the (m+2)th longest task is scheduled
second on processor m − 1. We carry on in reverse order up the list of processors
untill all tasks are scheduled in an almost LPT fashion.

The only situation that could prevent a true LPT schedule from being generated
would be if one of the tasks scheduled second on a higher numbered processor com-
pleted before one of the tasks scheduled first on a lower numbered processor. In this
case a simple downward shuffle of type D remedies the problem.

Now, as none of the transforms used increase throughput time, the total throughput
time of the resulting LPT schedule will be the same as the total throughput time of
the original OPT schedule and the contradiction is established.

This completes the proof of the theorem.

2.4.8 Preemptive Schedules for more than one Processors

If we introduce preemption and remove the restriction that once a task has begun
it must run to completion. we shall find that in general total throughput times can
be improved. For a simple example, consider three taks of unit execution time that
must be scheduled on two processors.

An optimal non-preemptive schedule is as follows:

1 2 3
P1

P2

whereas an optimal preemptive schedule would be:

1 2 3
P1

P2

Note that in a preemptive schedule, tasks may be stopped and restarted at will and
on any processor but there must not be an overlap of scheduled execution time for
any one task.

For any set of independent tasks the following preemptive scheduling result has been



2.4. SCHEDULING 61

known for some time:

Theorem

Consider an optimal m-processor preemptive schedule for a set of tasks, {T1, T2, · · · , Tn},
with the execution time of Ti given by ti, then the total throughput time for the
preemptive schedule, tmin , is given by:

tmin = max{maxi{ti},
1

m

n∑
i=1

ti}

Proof

It is clear that tmin must be a lower bound for the total throughput time since no
schedule can terminate in less time than it takes for the longest task to complete,
and since a schedule can not be more efficient than to keep all the processors buzy
throughout the duration of the schedule.

To see that tmin can actually be achieved by a preemptive schedule consider the
following construction:

Sort the list of tasks into execution time order with the longest execution time first
so that

tmin = max{t1,
1

m

n∑
i=1

ti}

Now generate a schedule with total throughput time of tmin by scheduling T1 on the
first processor, T2 in the remaining time on the first processor and any extra time
on the second processor, T3 in the remaining time on the current processor with any
extra on the next processor. Continue in this way until all tasks are scheduled. Note
that all processors will be fully booked if t1 ≤ 1

m

∑n
i=1 ti but there will be free time

on the higher numbered processors if this is not the case.

For an example of this consider the following set of tasks:

Task Processing Time
T1 6
T2 4.5
T3 4
T4 3.5
T5 3

A 3 processor preemptive optimal schedule for this set of tasks has a total throughput
of:



62 CHAPTER 2. OPERATING SYSTEMS THEORY

tmin =
6 + 4.5 + 4 + 3.5 + 3

3
= 7

and can be constructed as

1 2 3 4 5 6 7 8
P1

P2

P3

2.4.9 Scheduling Dependent Tasks

Let T = {T1, T2, . . . , Tn} be a set of tasks. Suppose the tasks are constrained to run
in some order of precedence. The precedences are specified as a directed graph, G
whose nodes are the set of tasks T and whose directed edges are members of T × T
with Ti → Tj if task Ti must complete before task Tj starts. If there is a sequence
of edges Ti → Tj → . . . → Tk then we say that Ti is a predecessor of Tk and that Tk

is a successor of Ti. Two tasks are said to be independent if neither is a successor
of the other. Independent tasks may be executed in any order or even at the same
time if more than one processor is available. Dependent tasks must be executed in
the order specified by the directed edges in the precedence graph.

In the previous section we were concerned with scheduling sets of independent tasks
on m processors. In this section we will investigate two algorithms for scheduling
dependent tasks on m processors. The particular dependence is always given by a
precedence graph.

A-Scheduling

This scheduling algorithm involves a list ordering sub-algorithm as follows:

To compare two lists L and L′ do the following:

Step 1 Sort the two lists into decreasing order.

Step 2 If L is longer in length than L′ then swap the names of the lists.

Step 3 Compare element by element until two unequal elements in the same position
are found, call them lj and l′j. We say that L < L′ if lj < l′j else L > L′.

Step 4 If all elements are equal up until the last element of L then L < L′ if L′ is
longer in length than L else the lists are equal.

and a labelling sub-algorithm which is designed to give each of the n tasks in the
precedence graph a label:



2.4. SCHEDULING 63

Step 1: An arbitrary task T with no successor is chosen and given the label, 1.

Step 2: Suppose for some k, the set of labels, 1, 2, . . . , k − 1 have already be assigned.
Consider the set of tasks that have not yet received a label but whose successors
have already been labeled. To each of these tasks attach a list of labels of its
successors and choose the task T with the smallest successor list to receive the
label k. Note that the smallest successor list is chosen according to the list
ordering algorithm above.

Step 3: Repeat step 2 until all tasks in the precedence graph have received labels.

Once labels have been assigned to each task the scheduling algorithm is simple:

A-Schedule: Whenever a processor becomes free assign that task all of whose predecessors
have already been executed and which has the largest label among those tasks
not yet assigned.

Theorem

A-schedules for two processor systems are optimal when all tasks have equal exe-
cution times .

Proof

The proof of the fact that A-schedules are optimal under the above conditions is
rather difficult and will not be attempted in this course. The interested student is
refered to ***.

Examples

1) Consider a set of 22 tasks that satisfy the following precedence relations and
all have unit execution times. {T1 → T4, T2 → T4, T3 → T4, T4 → T5, T5 → T6,
T5 → T7, T6 → T9, T6 → T10, T7 → T10, T8 → T11, T8 → T12, T9 → T12,
T10 → T12, T10 → T13, T10 → T14, T12 → T15, T12 → T16, T13 → T15, T13 → T16,
T14 → T15, T14 → T16, T15 → T17, T16 → T17, T16 → T18, T16 → T19, T18 → T20,
T18 → T21}.

a) Draw the precedence graph for this set of tasks.

b) Label the tasks according to the labeling algorithm.

c) Produce an A-schedule for the tasks on two processors.

2) Show that an A-schedule is not necessarily optimal when three processors are
involved. Use the following precedence relations to provide a counter example.
Assume all tasks have equal execution times. {T1 → T4, T2 → T4, T3 → T4,
T4 → T6, T5 → T7, T5 → T8, T5 → T9, T5 → T10, T5 → T11, T5 → T12}.



64 CHAPTER 2. OPERATING SYSTEMS THEORY

3) Show that an A-schedule is not necessarily optimal when the tasks involved
do not have equal execution times. Use the following precedence relations to
provide a counter example. Assume that all tasks except task T3 execute in unit
time while task T3 require two units to execute. {T1 → T4, T1 → T5, T2 → T4,
T2 → T5, T3 → T5}

B-Scheduling

The B-schedule is optimal on any number of processors for sets of tasks, each of unit
execution time, whose precedence graphs are singly rooted trees. Each task in the
tree except for the root task has exactly one successor task. The structure of the
tree must be such that the independent tasks are the leaves of the tree while the
root of the tree is a task that can only start once all the other tasks in the set have
been completed.

The B-schedule requires the concept of a level which is as follows: The root of a tree
is at level 0. All tasks that are predecessors of the root are at level 1. All tasks that
are predecessors of level 1 tasks are at level 2. etc. etc.

B-Schedule: Whenever a processor becomes free, assign that task if any, all of whose prede-
cessors have already executed and which is at the highest level of those tasks
not yet assigned. If there is a tie the an arbitrary tie-breaking rule may be
used.

Example

1) Consider a set of 12 tasks that satisfy the following precedence relations and all
have unit execution times. {T1 → T3, T2 → T3, T3 → T9, T4 → T9, T5 → T10,
T6 → T10, T7 → T10, T8 → T11, T9 → T11, T10 → T12, T11 → T12}

a) Draw the precedence tree for this set of tasks.

b) Which task is the root task.

c) Produce an B-schedule for this set of tasks on three processors.



2.5. VIRTUAL MEMORY AND PAGING 65

2.5 Virtual Memory and Paging

2.5.1 Introduction

We consider a system consisting of two memory levels, main and auxiliary. At time
t = 0 assume that one program is residing in auxilliary memory. The program is
divided into n pages each consisting of c contiguous addresses. The program must
run in a main memory consisting of m page frames. If m < n then a paging algorithm
is required to calculate what page must be in which page frame at any particular
time t.

Each time the program makes a reference we are only interested in the index of
the page or page frame referenced and not with the individual words within the
page. Therefore if we regard N = {1, 2, 3, . . . , n} as the set of pages and M =
{1, 2, 3, . . . ,m} as the set of page frames then at each moment of time there is a
page map, ft : N → M ∪ {0} such that

ft(x) =

{
y if page x resides in page frame y at time t
0 if page x is missing from M at time t

When the processor generates an address α the hardware computes a memory loca-
tion β = ft(x)c + γ, where x and γ are determined from α = xc + γ with 0 ≤ γ < c.
Note that if c is a power of 2 then the hardware can be organized to make this
computation very efficient. If ft(x) = 0 then the hardware generates a page fault
interrupt.

When a page fault interrupt occurs the operating system must find the missing page
in auxiliary memory, place it in main memory, update the map ft, and attempt the
reference again. This is the task of the paging algorithm.

Now suppose that the average time to access a word in a page in main memory is
∆M and that the average time to transfer a page from auxiliary memory to main
memory is ∆A then an important system parameter is the ratio ∆ = ∆A

∆M
. On most

operating systems ∆ > 104 but good paging algorithms should not rely on this
assumption.

Now a program’s paging behavior is described by its page reference sequence:

ω = r1, r2, . . . , rt, . . . ,

where rt = i if page i is referenced at the tth reference. Corresponding to the
reference sequence is a sequence of real times

a1, a2, . . . , at, . . . ,

such that at is the actual time at which reference rt is made. The real time ellapsed
between reference rt and reference rt+1 is given by:



66 CHAPTER 2. OPERATING SYSTEMS THEORY

at+1 − at =

{
∆M if rt+1 is in memory
∆M + ∆A otherwize

Now the fault rate, F (ω), is defined as the number of page faults encountered while
processing reference sequence ω normalized by the length of ω. The expected ellapsed
time for a reference is thus:

E[at+1 − at] = ∆M(1− F (ω)) + (∆M + ∆A)F (ω) = ∆M(1 + ∆F (ω))

Thus minimizing F (ω) for all possible ω will minimize the running time of the
program.

2.5.2 Demand Paging

In our study of paging algorithms we will only deal with so-called demand paging.
Only the missing page is fetched from auxilliary memory and page replacements only
occur when main memory is full. In the abstract a demand paging algorithm, A, is
a mechanism for processing a reference sequence,

ω = r1, r2, . . . , rt, . . . ,

and generating a sequence of memory states,

S0, S1, . . . , St, . . . .

Each memory state St is the set of pages from N which reside in M at time t. The
memory states satisfy the following conditions:

S0 = ∅ , St ⊆ N , ‖St‖ ≤ m , rt ∈ St and

St =


St−1 if rt ∈ St−1

St−1 + rt if rt 6∈ St−1 and ‖St−1‖ < m
St−1 + rt − rs if rt 6∈ St−1 and ‖St−1‖ = m and rs ∈ St−1

Note that rt is the page demanded by the next instruction in the program and rs is
the page chosen for overwriting by the operating system’s replacement policy.

2.5.3 Some Common Demand Paging Algorithms

Before we discuss specific paging algorithms we require four further definitions to
do with a reference sequence:

ω = r1, r2, . . . , rt, . . . .



2.5. VIRTUAL MEMORY AND PAGING 67

Firstly, the forward distance dt(x) at time t for page x is the distance to the first
reference to x after time t:

dt(x) =

{
k if rt+k is the first occurrence of x in rt+1, rt+2, . . .
∞ if x does not appear after rt

Secondly, the backward distance bt(x) is the distance to the most recent reference to
x before time t:

bt(x) =

{
k if rt−k is the last occurrence of x in r1, r2, . . . , rt

∞ if x does not appear in r1, r2, . . . , rt

Thirdly, the reference arrival time lt(x) denotes the last time before time t that the
reference x was fetched from auxilliary memory.

lt(x) = max{i ≤ t‖Si − Si−1 = x}

And fourthly, the reference frequency #t(x) denotes the number of references to x
in r1, r2, . . . , rt,

In the following examples of demand paging algorithms we assume that ‖St−1‖ = m
and that rt 6∈ St−1. Also let R(St−1) denote the page in St−1 that is replaced so that:

St = St−1 + rt −R(St−1)

Different replacement rules, R, will give rise to different demand paging algorithms:

LRU Least Recently Used: The page in St−1 that is replaced is the one with the
largest backward distance:

R(St−1) = y ⇐⇒ bt−1(y) = max{bt−1(z) | z ∈ St−1}

LFU Least Frequently Used: The page in St−1 that is replaced is the one having
received the least use. (The tie-breaking rule is usually LRU)

R(St−1) = y ⇐⇒ #t−1(y) = min{#t−1(z) | z ∈ St−1}

FIFO First In First Out: The page replaced is the one that has been in memory for
the longest time:

R(St−1) = y ⇐⇒ lt−1(y) = min{lt−1(z) | z ∈ St−1}

LIFO First In First Out: The page replaced is the one that has been in memory for
the shortest time:

R(St−1) = y ⇐⇒ lt−1(y) = max{lt−1(z) | z ∈ St−1}



68 CHAPTER 2. OPERATING SYSTEMS THEORY

BEL Belady’s Optimal Algorithm: The page replaced is the one with the largest
forward distance in the sequence rt+1, rt+2, . . ..

R(St−1) = y ⇐⇒ dt−1(y) = max{dt−1(z) | z ∈ St−1}

If two or more pages have infinite forward distance then the page with the
smallest page number is chosen for replacement. This rule cannot effect the
fault-rate performance as any page with infinite forward distance is never used
again.

Note that Belady’s algorithm is unrealizable since it requires a look into the future
operation of the program. However it does provide a useful benchmark against which
to measure the performance of the other realizable algorithms.

2.5.4 The Optimality of Belady’s Algorithm

Theorem

Belady’s demand paging algorithm is optimal in the sense that it results in the
minimum achievable paging cost when processing any reference sequence ω. (paging
costs are measured in units of page replacements and they only start mounting up
once memory is full)

Proof

Let > denote a linear ordering of the references in ω such that y > z if y has greater
forward distance than z at time t.

Let Ck(S + rt − y, t) denote the cost of processing the references, rt+1, rt+2, . . . , rt+k

starting from state S at time t. Note that page rt is entering S and overwriting page
y. For Belady’s algorithm to be optimal we must show that for all k:

y > z ⇒ ∆Ck = Ck(S + rt − z, t)− Ck(S + rt − y, t) ≥ 0

since if this is the case then the y to choose to obtain minimal achievable cost is just
the y with greatest forward distance. We will show that ∆Ck = 0 ∨ 1 by induction
on k. The result is trivial for k = 0 since we are then considering processing
the next zero page references and any algorithm is optimal. Now suppose that
y > z ⇒ ∆Cj = 0 ∨ 1 for j = 0, 1, . . . , k − 1 we must show that the same statement
is true when j = k. There are three cases to be considered:

Case 1: rt+1 ∈ S − y − z In this case we have:

∆Ck = Ck(S + rt − z, t)− Ck(S + rt − y, t)
= Ck−1(S + rt − z, t + 1)− Ck−1(S + rt − y, t + 1)

which is 0 ∨ 1 by the induction hypothesis.



2.5. VIRTUAL MEMORY AND PAGING 69

Case 2: rt+1 = z In this case we have:

∆Ck = Ck(S + rt − z, t)− Ck(S + rt − y, t)
= 1 + Ck−1(S + rt − z + rt+1 − u, t + 1)− Ck−1(S + rt − y, t + 1)
= 1− [Ck−1(S + rt − y, t + 1)− Ck−1(S + rt − u, t + 1)

where by the induction hypothesis u has greatest forward distance in S +rt−z.
So u ≥ y in the linear ordering and the term in square brackets is either 0 if
u = y or 0 ∨ 1 if u > y by the induction hypothesis. So again in this case ∆Ck

is 0 ∨ 1.

Note: We need not consider the case rt+1 = y since we assume that y > z ≥ rt+1

Case 3: rt+1 6∈ S + rt In this case we have:

∆Ck = Ck(S + rt − z, t)− Ck(S + rt − y, t)
= [1 + Ck−1(S + rt − z + rt+1 − u, t + 1)]− [1 + Ck−1(S + rt − y + rt+1 − v, t + 1)]
= Ck−1(S + rt − z + rt+1 − u, t + 1)− Ck−1(S + rt − y + rt+1 − v, t + 1)

where u has greatest forward distance in S + rt − z and v has the greatest
forward distance in S + rt− y. Now let s be the element of S + rt− z− y with
the greatest forward distance then there are three possibilities in the ordering
of s, y and z.

a) s > y > z In this case u = v = s and ∆Ck reduces to:

Ck−1((S + rt + rt+1 − s)− z, t + 1)− Ck−1((S + rt + rt+1 − s)− y, t + 1)

which is 0 ∨ 1 by the induction hypothesis.

b) y > s > z In this case u = y and v = s and ∆Ck reduces to:

Ck−1((S + rt + rt+1 − y)− z, t + 1)− Ck−1((S + rt + rt+1 − y)− s, t + 1)

which is 0 ∨ 1 by the induction hypothesis since s > z.

c) y > z > s In this case u = y and v = z and ∆Ck reduces to:

Ck−1(S + rt − z + rt+1 − y, t + 1)− Ck−1(S + rt − y + rt+1 − z, t + 1)

which is 0.

Thus by induction ∆Ck is 0∨ 1 for all k and the optimality of Belady’s algorithm is
established.



70 CHAPTER 2. OPERATING SYSTEMS THEORY

2.6 Computer Security

2.6.1 Introduction

Computer Security has been the subject of intensive research since multi-user op-
erating systems were first introduced. Its importance continues to grow as more
sensitive information is stored, transmitted and processed by computers. Some ap-
plications include the military, banks, credit bureaus and hospitals. Security flaws
of computer systems and approaches to penetration have been enumerated in the
literature. Here are some of the more common flaws:

• The system does not authenticate itself to the user. A common way to steal
passwords is for an intruder to leave a running process which masquerades as
the standard system logon. After an unsuspecting user enters an identification
and a password, the masquerader records the password, gives an error message
(identical to the standard one provided by the logon process in the case of a
mistyped password) and aborts. The true logon process is left to take care of
any retry.

• Improper handling of passwords. Passwords may not be encrypted, or the
table of encrypted passwords may be exposed to the general public, or a weak
encryption algorithm may be used.

• Improper implementation A security mechanism may be well thought out but
improperly implemented. For example, timely user abortion of a system process
may leave a penetrator with system administrator access rights.

• Trojan horse: A borrowed program may surreptitiously access information that
belongs to the borrower and deliver this information to the lender.

• Clandestine code: Under the guise of correcting an error or updating an oper-
ating system code can be embedded to allow subsequent unauthorized entry to
a system

In this section we will study cryptographic methods for access control and message
protection.

2.6.2 Encryption Systems

An encryption system is an encryption procedure executed by a sender, which takes
a message (called the plain-text) and a small piece of information (called the key)
and creates an encoded version of the message (called the cipher-text). The cipher-
text is transmitted along an open line to a receiver who must then use a decrypting
procedure together with the key to recover the plain-text. The key is arranged in
advance between sender and receiver.



2.6. COMPUTER SECURITY 71

When we consider the quality of an encryption system, we assume that a third-party
trying to decode the message knows the encryption and decryption procedures and
has a copy of the cipher-text. The only thing missing is the key. We also assume
that the sender does not spend time trying to contrive a difficult to read message
but relies entirely on the encryption system to provide all the needed security.

A more demanding standard for measuring the quality of an encryption system is
that it should be safe against a chosen plain-text attack. It is often possible for the
third party to process a known message through the encryption procedure and thus
obtain a plain-text cipher-text pair from which it may be possible to deduce the key.

2.6.3 Examples

Simple Substitution

This system involves a simple letter-for-letter substitution method. The key is a
rearrangement of the 26 letters of the alphabet. For example if the key is given as:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

actqgwrzdevfbhinsymujxplok

and the plain-text message starts as follows

THE SECURITY OF THE RSA ENCODING SCHEME ...

then the cipher-text message will read:

uzg mgtjyduo iw uzg yma ghtiqdhr mtzgbd ...

Most messages can de decoded without the key by looking for frequently occuring
pairs of letters. (TH and HE are by far the most common pairings to be found in
most english messages). Once these letters have been itentified the rest usually fall
into place easily. Of course this system is useless against a known plain-text attack.

The Vigenere Cipher

This cipher works by replacing each letter by another letter a specified number of
positions further down the alphabet. For example, J is 5 positions further down
from E and D is 5 positions on from Y. The key in this cipher is a sequence of shift
ammounts. If the sequence is of length 10 the the first member of the key is used
to process the letters in positions 1, 11, 21, ... in the plain-text. The second
member of the key is used to process the letters in positions 2, 12, 22, ... and
so on. For example if we use the key:



72 CHAPTER 2. OPERATING SYSTEMS THEORY

3 1 7 23 10 5 19 14 19 24

and the plain-text message starts as follows

THE SECURITY OF THE RSA ENCODING SCHEME ...

then the cipher-text message will read:

wil pohnfbrb pm qrj kgt cqdvassz gvfhnl ...

This type of cipher was considered very secdure up until 1600 AD but it is not very
difficult to crack. If the length of the key is known then a guess at the first key
element coupled with a table showing possible two letter combinations in positions
1,2 and 11,12 and 21,22 etc will usually reveal the second element of the key. The
same technique can be used to get the rest of the key. Again this cipher is useless
against a known plain-text attack.

One-Time Pads

In the previous example, if the key-sequence is long enough then the cipher becomes
harder and harder to crack. In the extreen case when the key-sequence is as long
as the plain-text itself the cipher is theoretically unbreakable (since for any possible
plain-text there is a key for which the given cipher-text comes from that plain-
text). This type of cipher has reportedly been used by spies, who were furnished
with notebooks containing page after page of randomly generated key-sequences.
Note that it is essential that each key-sequence be used only once, (hence the name
one-time pad.

One-time pads seem practical when an agent is communicating with a central com-
mand. They become less attractive if several agents need to communicate with each
other.

2.6.4 Introduction to Number Theory

To ensure that cipher systems are safe one usually resorts to Number Theory. Before
presenting some number theoretic cipher systems we must revise our number theory
background.

Congruences

The congruence a ≡ b mod n says that when divided by n, a and b have the same
remainder. For example:



2.6. COMPUTER SECURITY 73

100 ≡ 34 mod 11 , −6 ≡ 10 mod 8

In the second example we are using −6 = 8(−1) + 2. Note that we always have
a ≡ b mod n for some 0 ≤ n ≤ n− 1, and we are usually only concerned with that
b.

If a ≡ b mod n and c ≡ d mod n then we can add or multiply:

a + c ≡ b + d mod n , ac ≡ bd mod n

.

Division however does not always work:

6 ≡ 18 mod 12 , 3 6≡ 9 mod 12

The Greatest Common Divisor

For any two numbers, a and b, the number (a, b) is the largest number which divides
a and b evenly. For example:

(56, 98) = 14 and (76, 190) = 38

(a, b) is called the greatest common divisor of the integers a and b.

Theorem 1 For any two non-zero integers a and b, there are two other integers
x and y, with the property that (a, b) is the smallest positive integer that can be
expressed as:

(a, b) = ax + by

Proof: Consider the set S of all integers that can be written in the form ax+by, and
let S+ be the set of all positive integers in S. Now the set S contains the integers
a,−a, b and −b, so the set S+ is not empty. Thus S+ must have a least element,
call this element d. We must show that d = (a, b).

First by the division algorithm there are integers q and r such that a = dq + r, with
0 ≤ r < d. Thus r = a − dq and since d ∈ S+ we have r = a − (ax + by)q and a
little algebra gives r = a(1− xq) + b(−nq). Thus r is in S but since 0 ≤ r < d and
since d is the smallest element of S+ we must have r = 0. So d|a.

Similarily it can be shown that d|b.



74 CHAPTER 2. OPERATING SYSTEMS THEORY

Now suppose that c|a and c|b, then a = cu and b = cv. Thus d = ax + by =
cux+ cvy = c(ux+ vy) which shows that c|d. Thus d is the greatest common divisor
of a and b. So d = (a, b).

Euclid’s Algorithm

Given a and b the equation ax + by = d can be solved by making a sequence of
simplifying substitutions. Suppose a < b then divide a into b getting a quotient q
and remainder r so that b = aq + r. Now rewrite:

ax + by = d

as

ax′ + ry = d where x′ = x + qy

Now try to solve the equation ax′ + ry = d by employing the same technique, r < a
so divide r into a getting a quotient and remainder and rewrite the equation, etc
etc. Eventually one ends up with an equation of the form sx′ + ty′ = d where one
of s and t is 0 while the other is d. Consider the following example where we are
trying to compute (30, 69).

30x + 69y = d
30x′ + 9y = d [x′ = x + 2y]
3x′ + 9y′ = d [y′ = y + 3x′]
3x′′ + 0y′ = d [x′′ = x′ + 3y′]

from the last line of this reduction we can read off x′′ = 1 and y′ = 0 is a solution if
d = 3. Note that back-substitution will give x = 7 and y = −3 and the solution to
the original problem is:

(30, 69) = 3 = (30)(7) + (69)(−3)

It is important to realize that this process is feasable on a computer even if a and
b are several hundred digits long. It is easy to show that the larger of the two
coefficients decreases by 1

2
every two equations. Thus in twenty iterations the larger

coefficient will decrease by a factor of 2−10 < 10−3. The greatest common divisor of
two 600 digit numbers could be computed in no more than 4000 iterations.

Corollary 2 If p is prime and if ar ≡ as mod p and if a 6≡ 0 then r ≡ s mod p.



2.6. COMPUTER SECURITY 75

Proof: Since p is prime we have (a, p) = 1 so there are integers x and y such that
ax + py = 1. Hence ax ≡ 1 mod p and r ≡ (1)r ≡ axr ≡ xar ≡ xas ≡ s mod p.

Corollary 3 If p is prime and a 6≡ 0 mod p then for any b there is a y with ay ≡
b mod p.

Proof: In the preceeding proof we found an x with ax ≡ 1 mod p. Now just take
y = bx and the result follows.

Powers modulo a Prime

The sequence a, a2, a3, . . . ,modp has many applications in cryptography. Before
looking at the theoritical properties of such a sequence you should convince yourself
that it is feasable to compute ab mod p even if a and b are several hundred digits
long. The trick is to compute a2, a4, a8, . . . using mod p arithmetic at each step until
you are almost there.

For example to compute 432687 mod 987 we note that:

687 = 512 + 128 + 32 + 4 + 2

so that in

432687 = (4322)(4324)(43232)(432128)(432512)
≡ (81)(639) . . . (858) mod 987
≡ 204 mod 987

Note that even if the numbers are several hundred digits long then although special
routines must be written to handle the modulo multiplications, these calculations
with exponents will be feasable.

We will now develope a series of theorems involving powers of numbers in some
modulo arithmetic field.

Theorem 4 Suppose b 6≡ 0 and let d be the smallest number such that bd ≡ 1. Then
for any e > 0, be ≡ 1 implies d|e.

Proof: If d 6 |e then e = dq + r for some 0 < r < d and br ≡ be−dq ≡ be(bd)−q ≡ 1
which contradicts the definition of d.

Theorem 5 There are at most d solutions to a polynomial congruence of degree d:

α0x
d + α1x

d−1 + . . . + αd ≡ 0 mod p



76 CHAPTER 2. OPERATING SYSTEMS THEORY

Proof: This theorem is proved in the same way as the corresponding theorem in
ordinary algebra: If x = β is a solution the the polynomial can be written as (x−β)
times a polynomial of degree d− 1 which by induction has at most d− 1 solutions.

Primitive Roots

In cryptography we often work in a field mod p where p is some large prime number.
We will be interested in elements of this field whose powers that take on all possible
values in the field. Such an element is called a primitive root. Here is a more formal
definition:

Definition: a is called a primitive root of p if for every b between 1 and p− 1 there
is an x between 1 and p− 1 such that ax ≡ b mod p.

Primitive roots are only useful if we know they exist. The following theorem which
is quite hard to prove ensures the existance of a primitive root for appropriately
chosen p.

Theorem 6 If p is prime then a primitive root a exists for modulo p arithmetic.

Proof: Choose any a 6≡ 0 and let d be the smallest positive number for which
ad ≡ 1, (there must be such a number since aK ≡ aL implies aK−L ≡ 1). If d = p−1
then a is a primitive root. If d < p− 1, we will find a′ and d′ with d′ > d such that
(a′)d′ ≡ 1 and the process can be repeated until a primitive root is found.

We have ad ≡ 1 so the sequence a, a2, a3, . . . , ad ≡ 1 consists of d different solutions
to the polynomial equation xd ≡ 1. If d < p − 1 then let b be any non-member of
the sequence. Let e be the smallest positive number with be ≡ 1. If e > d then we
can take a′ = b and d′ = e and we are done so from now on assume that e ≤ d. Also
note that e does not divide d so that e

(d,e)
> 1.

Now let a′ = a(d,e)b and let c = d
(d,e)

and let d′ = ce > d.

We must show that ce is the smallest number with the property that (a′)ce ≡ 1.

First note that (a′)ce ≡ (ad)e(be)c ≡ 1

Also note that (c, e) = ( d
(d,e)

, e) = 1 so by Euclid there exist integers K and L such

that cK + eL = 1.

Now assume that (a′)x ≡ 1, then we have 1 ≡ (a′)cx ≡ bcx. So cx = eM for some
integer M and x = (cK + eL)x = e(KM + Lx). So x = ey for some integer y We
will show that y is divisable by c and we are done.



2.6. COMPUTER SECURITY 77

(a′)x ≡ 1 ⇒ (a(d,e)b)ey ≡ 1
⇒ a(d,e)ey ≡ 1
⇒ (d, e)ey = dN for some integer N
⇒ ey = cN
⇒ y = (cK + eL)y = c(Ky + LN)

Thus x is divisable by ce so ce is the smallest number with the property that (a′)ce ≡
1 but as already mentioned ce > d and hence a′ is a better candidate than a for a
primitive root. This completes the proof and some corollaries follow easily.

In the following three corollaries assume that p is prime:

Corollary 7 If a is a primitive root of p then ap−1 ≡ 1 mod p.

Proof: We know that ad ≡ 1 for some d between 1 and p− 1. If d < p− 1 then the
sequence of powers of a would start repeating before all the numbers between 1 and
p− 1 were obtained and then a would not be a primitive root.

Corollary 8 For any b 6≡ 0 we will always have bp−1 ≡ 1 mod p.

Proof: Let a be a primitive root then using the previous corollary we have bp−1 ≡
(ax)p−1 ≡ (ap−1)x ≡ 1.

Corollary 9 If x ≡ y mod p− 1 then bx ≡ by mod p.

Proof: For some integer r we have y = r(p− 1)+x thus by ≡ (bp−1)rbx ≡ bx mod p.

2.6.5 The Discrete Logarithm Problem

The existance of a primitive root a for any prime p shows that the equation

ax ≡ b mod p

has a solution for any b 6≡ 0. We have seen that given the left hand side of this
equation it is usually feasable to compute the right hand side even when the integers
involved are large. Going the other way however is much harder. Given a primitive
root a and any element b the computation of x to satisfy the above equation is called
the discrete logarithm problem. x is called the discrete logarithm of b with respect to
the primitive root a modulo prime p. Many modern encryption systems are based
on the fact that no efficient way of computing discrete logarithms is known.

To make use of the discrete logarithm problem to build an encryption system one
must have a reliable method of finding at least one primitive root a given any prime



78 CHAPTER 2. OPERATING SYSTEMS THEORY

p. A little analysis shows that in most cases it will be sufficient to choose a at
random and then test for primitivity. If a turns out to be not primitive then choose
another a at random.

The analysis goes as follows: It is easy to show that if a is a primitive root then ax

is a primitive root if (x, p− 1) = 1.

Firstly:

(ax)n ≡ 1 mod p → anx ≡ 1

→ (p− 1)/nx

→ nx = r(p− 1)

Thus:

(x, p− 1) = 1 → Ax + B(p− 1) = 1

→ Anx + Bn(p− 1) = n

→ Ar(p− 1) + Bn(p− 1) = n

→ (Ar + Bn)(p− 1) = n

→ p− 1/n

and so we have shown that (ax)n ≡ 1 → (p − 1)/n which means ax is a primative
root.

Now suppose p− 1 has a prime factor decomposition:

p− 1 = (p1)
α1(p2)

α2 . . . (pn)αn

then the number of primitive roots would be given by the number of x’s relatively
prime to p− 1:

#(x′s) = (p− 1)(
p1 − 1

p1

)(
p2 − 1

p2

) . . . (
pn − 1

pn

)

For example if p = 1223 then p− 1 = 1222 = (2)(13)(47) and

#(x′s) = 1222(
1

2
)(

12

13
)(

46

47
) ≈ 0.45

so choosing a at random would succeed 45% of the time. This is an example of a
probabilistic algorithm and problems in cryptography are often solved by means of
them.

2.6.6 The Diffie-Hellman Key exchange procedure

As a first example of how the intractability of the discrete logarithm problem may
be used in a cryptographic setting consider the problem of two people, A and B,



2.6. COMPUTER SECURITY 79

trying to agree on a secret key knowing that a third party, C, is listening to all
communications between them.

The technique is as follows: A and B agree publically on a large prime p and a
primitive root a. These numbers will also be known to C. Then A secretly chooses
a large number α while B secretly chooses a large number β. Then aα mod p and
aβ mod p are computed by A and B respectively and publically announced. The
secret key which will be known only to A and B can then be computed by them as:

secret key = (aβ)α mod p = (aα)β mod p

Note that for C to compute the secret key he would have to determine either α or
β from his knowledge of p, a, aα and aβ. In other words he would have to solve the
discrete logarithm problem for large modulo arithmetic which no one to this date
has been able to do.

2.6.7 The Code Protection Problem

As another example of the use of the intractability of the discrete logarithm problem
consider the following scheme for protecting code against piracy.

The author of the code selects a large prime p with primitive root a and stores these
as constants in the code. The author also chooses a secret number c for that copy
of the code and stores ac mod p as a constant in the code.

At startup the code computes a machine identity h. This identity could be a com-
bination of the BIOS id and manufacturing date together with the hard disk id and
formatting date.

The code then computes ah mod p and makes this number known to the user by
displaying it on the screen. The user then phones the author and tells him over the
phone the number displayed on the screen.

If that user is currently paid-up then the author then computes a password (ah)c mod
p and then phones the user back to inform him of his password.

The user enters the password from the keyboard and the code computes (ac)h mod p
to determine if access is granted.

Note that the user cannot compute the password before the code is run since neither
c nor h is obtainable from non-executing code. Naturally tracing must be prohibited
to prevent the password being detected at access determination time.



80 CHAPTER 2. OPERATING SYSTEMS THEORY

2.6.8 The Rivest-Shamir-Adleman public key system

The idea of public key encryption is to allow a receiver to set up a system so that
anyone can send him an encoded message, but only the receiver will be able to
decode it. The plan is as follows:

The receiver chooses two large primes p and q. He then computes a number e that
is relatively prime to both p− 1 and q − 1. In other words:

(e, p− 1) = (e, q − 1) = 1

. He also computes another number d such that:

ed ≡ 1 mod (p− 1) and ed ≡ 1 mod (q − 1)

Finally the receiver computer the product of p and q:

n = pq

The receiver keeps p, q and d secret and publishes e and n. To send a message M < n
to this receiver, any member of the public can compute M e mod n and transmit M e

to the receiver safe in the knowledge that no evesdropper can recover M from M e.
Rivest, Shamir and Alderman showed that the receiver can recover M from M e by
computing (M e)d mod n. This public key encryption technique has become widely
used and is known as RSA encryption.

To show that RSA encryption is feasable we must show that it is feasable to compute
e and d from knowledge of p and q and we must also show that (M e)d ≡ M mod n.
Lastly the reader must be convinced that it is extremly hard to compute p and q
from n so that the secrecy of d is guarenteed.

Firstly to get e such that (e, p − 1) = (e, q − 1) = 1 just choose e to be prime and
greater than p

2
and q

2
.

Secondly to find d such that ed ≡ 1 mod (p− 1) and ed ≡ 1 mod (q − 1) we solve

ex + (p− 1)(q − 1)y = 1

for x any y via Euclid’s algorithm with back substitution and let d = x.

Thirdly to show that (M e)d ≡ M mod p we use the last corollary from the section
on number theory which states that if x ≡ y mod p−1 then bx ≡ by mod p. We have
ed ≡ 1 mod (p−1) so the corollary tells us that M ed ≡ M1 mod p. Similarily M ed ≡
M1 mod q Thus M ed−M is divisable by both p and q so (M e)d ≡ M mod (pq = n)

Lastly to convince yourself that the factors p and q can remain secret even if n is
known consider the fact that the crude approach of dividing n by all numbers up
until

√
n would take approximately 1050 steps for a 100 digit n and in the last 100

years many famous mathematicians have been unable to devise a significantly better
factoring algorithm.



2.6. COMPUTER SECURITY 81

2.6.9 Authentication and Digital Signatures

A problem with public key encryption is that it is easy for a troublemaker C to send
a message to A pretending to be B. This problem can be solved if both A and B
have published encryption keys. The solution is as follows:

Suppose B wants to send a message M to A. He first encrypts the message using
his own private decryption key dB to get MdB mod nB. He then prepends his name
and encrypts the result using A′s public encryption key to get (B + (MdB mod
nB))eA mod nA This mess is sent to A via an open line. A decrypts the mess using
his private decryption key dA and discovers B’s name at the begining of an encrypted
message. A then decrypts the rest of the message using B′s public encryption key
eB. If the result makes sense A is secure in the knowledge that only someone knowing
B′s private decryption key dB could have sent the message.

2.6.10 Secure Shell Environment:

ssh2 (Secure Shell) is a program for logging into a remote machine and executing
commands in a remote machine. It is intended to replace rlogin and rsh, and provide
secure, encrypted communications between two untrusted hosts over an insecure
network. X11 connections and arbitrary TCP/IP ports can also be forwarded over
the secure channel.

ssh2 connects and logs into the specified hostname. The user must prove his identity
to the remote machine using some authentication method.

Public key authentication is based on the use of digital signatures. Each user creates
a public / private key pair for authentication purposes. The server knows the user’s
public key, and only the user has the private key. The filenames of private keys that
are used in authentication are set in .ssh2/identification. When the user tries to
authenticate himself, the server checks .ssh2/authorization for filenames of matching
public keys and sends a challenge to the user end. The user is authenticated by
signing the challenge using the private key.

If other authentication methods fail, ssh2 will prompt for a password. Since all
communications are encrypted, the password will not be available for eavesdroppers.

When the user’s identity has been accepted by the server, the server either executes
the given command, or logs into the machine and gives the user a normal shell on
the remote machine. All communication with the remote command or shell will be
automatically encrypted.

If no pseudo tty has been allocated, the session is transparent and can be used to
reliably transfer binary data.

The session terminates when the command or shell in on the remote machine exits
and all X11 and TCP/IP connections have been closed. The exit status of the remote



82 CHAPTER 2. OPERATING SYSTEMS THEORY

program is returned as the exit status of ssh2.

Ssh2 automatically maintains and checks a database containing the host public keys.
When logging on to a host for the first time, the host’s public key is stored in a file
.ssh2/hostkey-PORTNUMBER-HOSTNAME.pub in the user’s home directory. If
a host’s identification changes, ssh2 issues a warning and disables the password
authentication in order to prevent a Trojan horse from getting the user’s password.
Another purpose of this mechanism is to prevent man-in-the-middle attacks which
could otherwise be used to circumvent the encryption.

ssh2 exercise

ssh2 has been installed on your unix box. Download ssh2 for windows from
www.ssh.com and try to establish a secure shell connection to your unix box. Re-
member that ssh2 has replaced ssh, the original secure shell command. Use man

ssh2 to get information on ssh2 options. Also make use of keysgen to generate
a private/public pair of keys and set up ssh so that you can start a unix session
without transmitting a password.



2.7. FURTHER READING 83

2.7 Further Reading

This set of notes is suppose to be self contained. The following books and articles
are not required reading for this course but they may help you to understand some
of the topics presented.

Paul Sheer, Rute Users Tutorial and Exposition, 2000.

Rute is a dependency consistant UNIX tutorial. This means that you
can read it from beginnning to end in consecutive order. This book can be
downloaded from: http://hughm.cs.unp.ac.za/ murrellh/notes/rute.ps

David Rusling, The Linux Kernel, 1999.

This book is for Linux enthusiasts who want to know how the Linux Kernel
works. It describes the principles and mechanisims that Linux uses. This
book can be downloaded from: http://hughm.cs.unp.ac.za/ murrellh/notes/tlk.ps

Silberschatz and Gavin, Operating Systems Concepts, Willey, 6th edition

A standard introduction to os concepts.

Coffman and Denning, Operating Systems Theory, Prentice Hall, 1973

This book contains proofs for many of the more difficult theorems discussed
in this course.

Maekawa and Oldehoeft, Operating Systems, Benjamin-Cumings, 1987

Not as advanced as Coffman but complements Coffman nicely.

Nishinuma and Espesser, Unix First Contact, Macmillan, 1987

Exactly what it claims to be, a first contact introduction.

Pilavakis, Unix Workshop, Macmillan, 1989

Good introduction to UNIX with an excellent chapter on inter-process
communication.

Filipski, Making Unix secure, Byte, pp. 113-128, April 1986

Describes security issues with respect to the UNIX operating system. Read
the article and in particular the password encryption scheme. The UNIX
password encryption is based on DES, the Data Encryption Standard.


