Types of Algorithms
Algorithm classification

- Algorithms that use a similar problem-solving approach can be grouped together
- We’ll talk about a classification scheme for algorithms
- This classification scheme is neither exhaustive nor disjoint
- The purpose is not to be able to classify an algorithm as one type or another, but to highlight the various ways in which a problem can be attacked
A short list of categories

- Algorithm types we will consider include:
 - Simple recursive algorithms
 - Backtracking algorithms
 - Divide and conquer algorithms
 - Dynamic programming algorithms
 - Greedy algorithms
 - Branch and bound algorithms
 - Brute force algorithms
 - Randomized algorithms
A simple recursive algorithm:
- Solves the base cases directly
- Recurs with a simpler subproblem
- Does some extra work to convert the solution to the simpler subproblem into a solution to the given problem

I call these “simple” because several of the other algorithm types are inherently recursive
Example recursive algorithms

- To count the number of elements in a list:
 - If the list is empty, return zero; otherwise,
 - Step past the first element, and count the remaining elements in the list
 - Add one to the result

- To test if a value occurs in a list:
 - If the list is empty, return false; otherwise,
 - If the first thing in the list is the given value, return true; otherwise
 - Step past the first element, and test whether the value occurs in the remainder of the list
Backtracking algorithms

- Backtracking algorithms are based on a depth-first recursive search

- A backtracking algorithm:
 - Tests to see if a solution has been found, and if so, returns it; otherwise
 - For each choice that can be made at this point,
 - Make that choice
 - Recur
 - If the recursion returns a solution, return it
 - If no choices remain, return failure
Example backtracking algorithm

- To color a map with no more than four colors:
 - color(Country n):
 - If all countries have been colored (n > number of countries) return success; otherwise,
 - For each color c of four colors,
 - If country n is not adjacent to a country that has been colored c
 - Color country n with color c
 - recursively color country n+1
 - If successful, return success
 - If loop exits, return failure
Divide and Conquer

A **divide and conquer algorithm** consists of two parts:

- Divide the problem into smaller subproblems of the same type, and solve these subproblems recursively
- Combine the solutions to the subproblems into a solution to the original problem

Traditionally, an algorithm is only called “divide and conquer” if it contains at least two recursive calls
Examples

- **Quicksort:**
 - Partition the array into two parts (smaller numbers in one part, larger numbers in the other part)
 - Quicksort each of the parts
 - No additional work is required to combine the two sorted parts

- **Mergesort:**
 - Cut the array in half, and mergesort each half
 - Combine the two sorted arrays into a single sorted array by merging them
Here’s how to look up something in a sorted binary tree:

- Compare the key to the value in the root
 - If the two values are equal, report success
 - If the key is less, search the left subtree
 - If the key is greater, search the right subtree

This is *not* a divide and conquer algorithm because, although there are two recursive calls, only one is used at each level of the recursion.
Fibonacci numbers

- To find the n^{th} Fibonacci number:
 - If n is zero or one, return one; otherwise,
 - Compute $\text{fibonacci}(n-1)$ and $\text{fibonacci}(n-2)$
 - Return the sum of these two numbers

- This is an expensive algorithm
 - It requires $O(\text{fibonacci}(n))$ time
 - This is equivalent to exponential time, that is, $O(2^n)$
A dynamic programming algorithm remembers past results and uses them to find new results.

Dynamic programming is generally used for optimization problems:

- Multiple solutions exist, need to find the “best” one
- Requires “optimal substructure” and “overlapping subproblems”
 - **Optimal substructure**: Optimal solution contains optimal solutions to subproblems
 - **Overlapping subproblems**: Solutions to subproblems can be stored and reused in a bottom-up fashion

This differs from Divide and Conquer, where subproblems generally need not overlap.
Fibonacci numbers again

To find the n^{th} Fibonacci number:

- If n is zero or one, return one; otherwise,
- Compute, *or look up in a table*, $\text{fibonacci}(n-1)$ and $\text{fibonacci}(n-2)$
- Find the sum of these two numbers
- Store the result in a table and return it

Since finding the n^{th} Fibonacci number involves finding all smaller Fibonacci numbers, the second recursive call has little work to do

- The table may be preserved and used again later
Greedy algorithms

- An **optimization problem** is one in which you want to find, not just a solution, but the *best* solution
- A “greedy algorithm” sometimes works well for optimization problems
- A **greedy algorithm** works in phases: At each phase:
 - You take the best you can get right now, without regard for future consequences
 - You hope that by choosing a *local* optimum at each step, you will end up at a *global* optimum
Example: Counting money

- Suppose you want to count out a certain amount of money, using the fewest possible bills and coins.
- A greedy algorithm would do this would be:
 At each step, take the largest possible bill or coin that does not overshoot

 - Example: To make $6.39, you can choose:
 - a $5 bill
 - a $1 bill, to make $6
 - a 25¢ coin, to make $6.25
 - A 10¢ coin, to make $6.35
 - four 1¢ coins, to make $6.39

- For US money, the greedy algorithm always gives the optimum solution.
A failure of the greedy algorithm

- In some (fictional) monetary system, “krons” come in 1 kron, 7 kron, and 10 kron coins.
- Using a greedy algorithm to count out 15 krons, you would get:
 - A 10 kron piece
 - Five 1 kron pieces, for a total of 15 krons
 - This requires six coins
- A better solution would be to use two 7 kron pieces and one 1 kron piece
 - This only requires three coins
- The greedy algorithm results in a solution, but not in an optimal solution.
Branch and bound algorithms are generally used for optimization problems.

- As the algorithm progresses, a tree of subproblems is formed.
- The original problem is considered the “root problem”.
- A method is used to construct an upper and lower bound for a given problem.
- At each node, apply the bounding methods:
 - If the bounds match, it is deemed a feasible solution to that particular subproblem.
 - If bounds do not match, partition the problem represented by that node, and make the two subproblems into children nodes.
- Continue, using the best known feasible solution to trim sections of the tree, until all nodes have been solved or trimmed.
Example branch and bound algorithm

- Traveling salesman problem: A salesman has to visit each of n cities (at least) once each, and wants to minimize total distance traveled
 - Consider the root problem to be the problem of finding the shortest route through a set of cities visiting each city once
 - Split the node into two child problems:
 - Shortest route visiting city A first
 - Shortest route not visiting city A first
 - Continue subdividing similarly as the tree grows
A **brute force algorithm** simply tries *all* possibilities until a satisfactory solution is found

Such an algorithm can be:

- **Optimizing**: Find the *best* solution. This may require finding all solutions, or if a value for the best solution is known, it may stop when any best solution is found
 - Example: Finding the best path for a traveling salesman

- **Satisficing**: Stop as soon as a solution is found that is *good enough*
 - Example: Finding a traveling salesman path that is within 10% of optimal
Improving brute force algorithms

- Often, brute force algorithms require exponential time
- Various *heuristics* and *optimizations* can be used
 - **Heuristic**: A “rule of thumb” that helps you decide which possibilities to look at first
 - **Optimization**: In this case, a way to eliminate certain possibilities without fully exploring them
Randomized algorithms

- A **randomized algorithm** uses a random number at least once during the computation to make a decision
 - Example: In Quicksort, using a random number to choose a pivot
 - Example: Trying to factor a large number by choosing random numbers as possible divisors
The End