
Stacks, Queues, and Deques



2

Stacks, Queues, and Deques

 A stack is a last in, first out (LIFO) data structure

 Items are removed from a stack in the reverse order from the 

way they were inserted

 A queue is a first in, first out (FIFO) data structure

 Items are removed from a queue in the same order as they 

were inserted

 A deque is a double-ended queue—items can be 

inserted and removed at either end



3

Array implementation of stacks

 To implement a stack, items are inserted and removed at 

the same end (called the top)

 Efficient array implementation requires that the top of 

the stack be towards the center of the array, not fixed at 

one end

 To use an array to implement a stack, you need both the 

array itself and an integer

 The integer tells you either:

 Which location is currently the top of the stack, or

 How many elements are in the stack



4

Pushing and popping

 If the bottom of the stack is at location 0, then an empty 
stack is represented by top = -1 or count = 0

 To add (push) an element, either:
 Increment top and store the element in stk[top], or

 Store the element in stk[count] and increment count

 To remove (pop) an element, either:
 Get the element from stk[top] and decrement top, or

 Decrement count and get the element in stk[count]

top = 3 or  count = 4

0      1      2      3      4      5      6     7      8      9

17 23 97 44stk:



5

After popping

 When you pop an element, do you just leave the “deleted” 
element sitting in the array?

 The surprising answer is, “it depends”

 If this is an array of primitives, or if you are programming in C or C++, 
then doing anything more is just a waste of time

 If you are programming in Java, and the array contains objects, you should 
set the “deleted” array element to null

 Why? To allow it to be garbage collected!

top = 2 or  count = 3

0      1      2      3      4      5      6     7      8      9

17 23 97 44stk:



6

Sharing space

 Of course, the bottom of the stack could be at the other end

top = 6 or  count = 4

17239744

0      1      2      3      4      5      6     7      8      9

stk:

 Sometimes this is done to allow two stacks to share the same 

storage area

topStk2 = 6

1723974449 57 3

0      1      2      3      4      5      6     7      8      9

stks:

topStk1 = 2



7

Error checking

 There are two stack errors that can occur:

 Underflow: trying to pop (or peek at) an empty stack

 Overflow: trying to push onto an already full stack

 For underflow, you should throw an exception

 If you don’t catch it yourself, Java will throw an 

ArrayIndexOutOfBounds exception

 You could create your own, more informative exception

 For overflow, you could do the same things

 Or, you could check for the problem, and copy 

everything into a new, larger array



8

Pointers and references

 In C and C++ we have “pointers,” while in Java 

we have “references”

 These are essentially the same thing

 The difference is that C and C++ allow you to modify pointers 

in arbitrary ways, and to point to anything

 In Java, a reference is more of a “black box,” or ADT

 Available operations are:

 dereference (“follow”)

 copy

 compare for equality

 There are constraints on what kind of thing is referenced: for 

example, a reference to an array of int can only refer to an 

array of int



9

Creating references

 The keyword new creates a new object, but also returns 

a reference to that object

 For example, Person p = new Person("John")

 new Person("John") creates the object and returns a 

reference to it

 We can assign this reference to p, or use it in other ways



10

Creating links in Java

class Cell { int value; Cell next;

Cell (int v, Cell n) { value = v; next = n; }

}

Cell temp = new Cell(17, null);

temp = new Cell(23, temp);

temp = new Cell(97, temp);

Cell myStack = new Cell(44, temp);

44 97 23 17

myStack:



11

Linked-list implementation of stacks

 Since all the action happens at the top of a stack, a singly-

linked list  (SLL) is a fine way to implement it

 The header of the list points to the top of the stack

44 97 23 17

myStack:

 Pushing is inserting an element at the front of the list

 Popping is removing an element from the front of the list



12

Linked-list implementation details

 With a linked-list representation, overflow will not 

happen (unless you exhaust memory, which is 

another kind of problem)

 Underflow can happen, and should be handled the 

same way as for an array implementation

 When a node is popped from a list, and the node 

references an object, the reference (the pointer in 

the node) does not need to be set to null

 Unlike an array implementation, it really is removed--

you can no longer get to it from the linked list

 Hence, garbage collection can occur as appropriate



13

Array implementation of queues

 A queue is a first in, first out (FIFO) data structure

 This is accomplished by inserting at one end (the rear) and 

deleting from the other (the front)

 To insert: put new element in  location 4, and set rear to 4

 To delete: take element from location 0, and set front to 1

17 23 97 44

0      1      2      3      4      5      6     7

myQueue:

rear = 3front = 0



14

Array implementation of queues

 Notice how the array contents “crawl” to the right as elements are 
inserted and deleted

 This will be a problem after a while!

17 23 97 44 333After insertion:

23 97 44 333After deletion:

rear = 4front = 1

17 23 97 44Initial queue:

rear = 3front = 0



15

Circular arrays

 We can treat the array holding the queue elements as 

circular (joined at the ends)

44 55 11 22 33

0      1      2      3      4      5      6     7

myQueue:

rear = 1 front = 5

 Elements were added to this queue in the order 11, 22, 

33, 44, 55, and will be removed in the same order

 Use: front = (front + 1) % myQueue.length;
and: rear = (rear + 1) % myQueue.length;



16

Full and empty queues

 If the queue were to become completely full, it would look 

like this:

 If we were then to remove all eight elements, making the queue 

completely empty, it would look like this:

44 55 66 77 88 11 22 33

0      1      2      3      4      5      6     7

myQueue:

rear = 4 front = 5

0      1      2      3      4      5      6     7

myQueue:

rear = 4 front = 5
This is a problem!



17

Full and empty queues: solutions

 Solution #1: Keep an additional variable

 Solution #2: (Slightly more efficient) Keep a gap between 

elements: consider the queue full when it has n-1 elements

44 55 66 77 88 11 22 33

0      1      2      3      4      5      6     7

myQueue:

rear = 4 front = 5count = 8

44 55 66 77 11 22 33

0      1      2      3      4      5      6     7

myQueue:

rear = 3 front = 5



18

Linked-list implementation of queues

 In a queue, insertions occur at one end, deletions at 
the other end

 Operations at the front of a singly-linked list (SLL) 
are O(1), but at the other end they are O(n)

 Because you have to find the last element each time

 BUT: there is a simple way to use a singly-linked 
list to implement both insertions and deletions in 
O(1) time

 You always need a pointer to the first thing in the list

 You can keep an additional pointer to the last thing in the 
list



19

SLL implementation of queues

 In an SLL you can easily find the successor of a 
node, but not its predecessor

 Remember, pointers (references) are one-way

 If you know where the last node in a list is, it’s 
hard to remove that node, but it’s easy to add a 
node after it

 Hence,

 Use the first element in an SLL as the front of the queue

 Use the last element in an SLL as the rear of the queue

 Keep pointers to both the front and the rear of the SLL



20

Enqueueing a node

17

Node to be 

enqueued

To enqueue (add) a node:

Find the current last node

Change it to point to the new last node

Change the last pointer in the list header

2344

last
first

97



21

Dequeueing a node

 To dequeue (remove) a node:

 Copy the pointer from the first node into the header

44 97 23 17

last
first



22

Queue implementation details

 With an array implementation:

 you can have both overflow and underflow

 you should set deleted elements to null

 With a linked-list implementation:

 you can have underflow

 overflow is a global out-of-memory condition

 there is no reason to set deleted elements to null



23

Deques

 A deque is a double-ended queue

 Insertions and deletions can occur at either end

 Implementation is similar to that for queues

 Deques are not heavily used

 You should know what a deque is, but we won’t 

explore them much further



24

Stack ADT

 The Stack ADT, as provided in java.util.Stack:

 Stack(): the constructor

 boolean empty()

 Object push(Object item)

 Object peek()

 Object pop()

 int search(Object o): Returns the 1-based position of the 

object on this stack



25

A queue ADT

 Java does not provide a queue class

 Here is a possible queue ADT:

 Queue(): the constructor

 boolean empty()

 Object enqueue(Object item): add at element at 

the rear

 Object dequeue(): remove an element from the front

 Object peek(): look at the front element

 int search(Object o): Returns the 1-based position 

from the front of the queue



26

A deque ADT

 Java does not provide a deque class

 Here is a possible deque ADT:

 Deque(): the constructor

 boolean empty()

 Object addAtFront(Object item)

 Object addAtRear(Object item)

 Object getFromFront()

 Object getFromRear()

 Object peekAtFront()

 Object peekAtRear()

 int search(Object o): Returns the 1-based position from the 

front of the deque



27

Using Vectors

 You could implement a deque with java.util.Vector:
 addAtFront(Object)  insertElementAt(Object, 0)

 addAtRear(Object item)  add(Object)

 getFromFront()  remove(0)

 getFromRear()  remove(size() – 1)

 Would this be a good implementation?

 Why or why not?



28

The End


