
Stacks, Queues, and Deques

2

Stacks, Queues, and Deques

 A stack is a last in, first out (LIFO) data structure

 Items are removed from a stack in the reverse order from the

way they were inserted

 A queue is a first in, first out (FIFO) data structure

 Items are removed from a queue in the same order as they

were inserted

 A deque is a double-ended queue—items can be

inserted and removed at either end

3

Array implementation of stacks

 To implement a stack, items are inserted and removed at

the same end (called the top)

 Efficient array implementation requires that the top of

the stack be towards the center of the array, not fixed at

one end

 To use an array to implement a stack, you need both the

array itself and an integer

 The integer tells you either:

 Which location is currently the top of the stack, or

 How many elements are in the stack

4

Pushing and popping

 If the bottom of the stack is at location 0, then an empty
stack is represented by top = -1 or count = 0

 To add (push) an element, either:
 Increment top and store the element in stk[top], or

 Store the element in stk[count] and increment count

 To remove (pop) an element, either:
 Get the element from stk[top] and decrement top, or

 Decrement count and get the element in stk[count]

top = 3 or count = 4

0 1 2 3 4 5 6 7 8 9

17 23 97 44stk:

5

After popping

 When you pop an element, do you just leave the “deleted”
element sitting in the array?

 The surprising answer is, “it depends”

 If this is an array of primitives, or if you are programming in C or C++,
then doing anything more is just a waste of time

 If you are programming in Java, and the array contains objects, you should
set the “deleted” array element to null

 Why? To allow it to be garbage collected!

top = 2 or count = 3

0 1 2 3 4 5 6 7 8 9

17 23 97 44stk:

6

Sharing space

 Of course, the bottom of the stack could be at the other end

top = 6 or count = 4

17239744

0 1 2 3 4 5 6 7 8 9

stk:

 Sometimes this is done to allow two stacks to share the same

storage area

topStk2 = 6

1723974449 57 3

0 1 2 3 4 5 6 7 8 9

stks:

topStk1 = 2

7

Error checking

 There are two stack errors that can occur:

 Underflow: trying to pop (or peek at) an empty stack

 Overflow: trying to push onto an already full stack

 For underflow, you should throw an exception

 If you don’t catch it yourself, Java will throw an

ArrayIndexOutOfBounds exception

 You could create your own, more informative exception

 For overflow, you could do the same things

 Or, you could check for the problem, and copy

everything into a new, larger array

8

Pointers and references

 In C and C++ we have “pointers,” while in Java

we have “references”

 These are essentially the same thing

 The difference is that C and C++ allow you to modify pointers

in arbitrary ways, and to point to anything

 In Java, a reference is more of a “black box,” or ADT

 Available operations are:

 dereference (“follow”)

 copy

 compare for equality

 There are constraints on what kind of thing is referenced: for

example, a reference to an array of int can only refer to an

array of int

9

Creating references

 The keyword new creates a new object, but also returns

a reference to that object

 For example, Person p = new Person("John")

 new Person("John") creates the object and returns a

reference to it

 We can assign this reference to p, or use it in other ways

10

Creating links in Java

class Cell { int value; Cell next;

Cell (int v, Cell n) { value = v; next = n; }

}

Cell temp = new Cell(17, null);

temp = new Cell(23, temp);

temp = new Cell(97, temp);

Cell myStack = new Cell(44, temp);

44 97 23 17

myStack:

11

Linked-list implementation of stacks

 Since all the action happens at the top of a stack, a singly-

linked list (SLL) is a fine way to implement it

 The header of the list points to the top of the stack

44 97 23 17

myStack:

 Pushing is inserting an element at the front of the list

 Popping is removing an element from the front of the list

12

Linked-list implementation details

 With a linked-list representation, overflow will not

happen (unless you exhaust memory, which is

another kind of problem)

 Underflow can happen, and should be handled the

same way as for an array implementation

 When a node is popped from a list, and the node

references an object, the reference (the pointer in

the node) does not need to be set to null

 Unlike an array implementation, it really is removed--

you can no longer get to it from the linked list

 Hence, garbage collection can occur as appropriate

13

Array implementation of queues

 A queue is a first in, first out (FIFO) data structure

 This is accomplished by inserting at one end (the rear) and

deleting from the other (the front)

 To insert: put new element in location 4, and set rear to 4

 To delete: take element from location 0, and set front to 1

17 23 97 44

0 1 2 3 4 5 6 7

myQueue:

rear = 3front = 0

14

Array implementation of queues

 Notice how the array contents “crawl” to the right as elements are
inserted and deleted

 This will be a problem after a while!

17 23 97 44 333After insertion:

23 97 44 333After deletion:

rear = 4front = 1

17 23 97 44Initial queue:

rear = 3front = 0

15

Circular arrays

 We can treat the array holding the queue elements as

circular (joined at the ends)

44 55 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 1 front = 5

 Elements were added to this queue in the order 11, 22,

33, 44, 55, and will be removed in the same order

 Use: front = (front + 1) % myQueue.length;
and: rear = (rear + 1) % myQueue.length;

16

Full and empty queues

 If the queue were to become completely full, it would look

like this:

 If we were then to remove all eight elements, making the queue

completely empty, it would look like this:

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5
This is a problem!

17

Full and empty queues: solutions

 Solution #1: Keep an additional variable

 Solution #2: (Slightly more efficient) Keep a gap between

elements: consider the queue full when it has n-1 elements

44 55 66 77 88 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 4 front = 5count = 8

44 55 66 77 11 22 33

0 1 2 3 4 5 6 7

myQueue:

rear = 3 front = 5

18

Linked-list implementation of queues

 In a queue, insertions occur at one end, deletions at
the other end

 Operations at the front of a singly-linked list (SLL)
are O(1), but at the other end they are O(n)

 Because you have to find the last element each time

 BUT: there is a simple way to use a singly-linked
list to implement both insertions and deletions in
O(1) time

 You always need a pointer to the first thing in the list

 You can keep an additional pointer to the last thing in the
list

19

SLL implementation of queues

 In an SLL you can easily find the successor of a
node, but not its predecessor

 Remember, pointers (references) are one-way

 If you know where the last node in a list is, it’s
hard to remove that node, but it’s easy to add a
node after it

 Hence,

 Use the first element in an SLL as the front of the queue

 Use the last element in an SLL as the rear of the queue

 Keep pointers to both the front and the rear of the SLL

20

Enqueueing a node

17

Node to be

enqueued

To enqueue (add) a node:

Find the current last node

Change it to point to the new last node

Change the last pointer in the list header

2344

last
first

97

21

Dequeueing a node

 To dequeue (remove) a node:

 Copy the pointer from the first node into the header

44 97 23 17

last
first

22

Queue implementation details

 With an array implementation:

 you can have both overflow and underflow

 you should set deleted elements to null

 With a linked-list implementation:

 you can have underflow

 overflow is a global out-of-memory condition

 there is no reason to set deleted elements to null

23

Deques

 A deque is a double-ended queue

 Insertions and deletions can occur at either end

 Implementation is similar to that for queues

 Deques are not heavily used

 You should know what a deque is, but we won’t

explore them much further

24

Stack ADT

 The Stack ADT, as provided in java.util.Stack:

 Stack(): the constructor

 boolean empty()

 Object push(Object item)

 Object peek()

 Object pop()

 int search(Object o): Returns the 1-based position of the

object on this stack

25

A queue ADT

 Java does not provide a queue class

 Here is a possible queue ADT:

 Queue(): the constructor

 boolean empty()

 Object enqueue(Object item): add at element at

the rear

 Object dequeue(): remove an element from the front

 Object peek(): look at the front element

 int search(Object o): Returns the 1-based position

from the front of the queue

26

A deque ADT

 Java does not provide a deque class

 Here is a possible deque ADT:

 Deque(): the constructor

 boolean empty()

 Object addAtFront(Object item)

 Object addAtRear(Object item)

 Object getFromFront()

 Object getFromRear()

 Object peekAtFront()

 Object peekAtRear()

 int search(Object o): Returns the 1-based position from the

front of the deque

27

Using Vectors

 You could implement a deque with java.util.Vector:
 addAtFront(Object)  insertElementAt(Object, 0)

 addAtRear(Object item)  add(Object)

 getFromFront()  remove(0)

 getFromRear()  remove(size() – 1)

 Would this be a good implementation?

 Why or why not?

28

The End

