
University of KwaZulu-Natal
Pietermaritzburg Campus

Examinations

Advanced Programming

COMP315P1

Time and Date:
14h00, Tuesday, 31st May, 2011.

Examiners:
Hugh Murrell and Conrad Mueller

time limit: 3 hours max marks: 100

This paper consists of 15 pages, excluding this one.
Make sure that no pages are missing.
Candidates may attempt all questions.

Write your answers in the GREEN book
Use the TURQUOISE book for rough work

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 1

Question 1.1

Give sample C++ declarations for the following: [4]

a) a pointer to an int

b) an array of 10 ints

c) a pointer to an array of 10 ints

d) an array of 10 pointers to ints

int* p1;

int p2[10];

int* p3 = new int[10];

int** p4 = new int*[10];

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 2

Question 1.2

The problem with arrays is that they do not know their own size. Write a C++ function,
reverseArray(int* a, int n) that will reverse the contents of an array containing n ints
in place.

For example, after executing:

int arr[] = {1,2,3,4,5,6}

reverseArray(arr, 6);

arr should contain {6,5,4,3,2,1}. [5]

void reverseArray(int* a, int n){

int i=0;

int j=n-1;

while(i<j){

int temp=a[j];

a[j]=a[i];

a[i]=temp;

++i;

--j;

};

return;

}

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 3

Question 2.1

Assume that you are coding in C++ before the advent of the Standard Template Library.
You decide to design a class called vector for storing arrays of elements of type double.

Your class must provide a constructor that creates space for a user specified number of
doubles on the heap and initializes each of them to zero. You must be able to index a
vector as you would an array and a vector must be able to grow at run time.

Study the header for vector given below. Some of the members of vector have completed
code. Some members are incomplete.

class vector {

int sz; // the number of elements (the size)

double* elem; // pointer to the first element

int space; // size + free_space

public:

vector(); // constructor

vector(int s); // constructor

vector(const vector&) ; // copy constructor:

~vector(){ delete[] elem; }; // destructor

int size() const { return sz; }; // get the current size

double get(int n) { return elem[n]; }; // access: read

void set(int n, double v) { elem[n]=v; }; // access: write

void reserve(int newalloc); // get more space

int capacity() const { return space; } // get available space

void resize(int newsize); // grow (or shrink)

vector& operator=(const vector& a); // copy assignment

double& operator[](int n) { return elem[n]; }; // access:

void push_back(double d); // add element

};

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 4

a) give code for the reserve member. [5]

void vector::reserve(int newalloc)

// make space for newalloc elements

{

if (newalloc<=space) return;

// never decrease allocation

double* p = new double[newalloc];

// allocate new space

for (int i=0; i<sz; ++i) p[i]=elem[i];

// copy old elements

delete[] elem;

// deallocate old space

elem = p;

space = newalloc;

}

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 5

b) give code for the resize member. [5]

void vector::resize(int newsize)

// make the vector have newsize elements

// initialize each new element 0.0

{

reserve(newsize);

// make sure we have sufficient space

for(int i = sz; i<newsize; ++i) elem[i] = 0;

// initialize new elements

sz = newsize;

}

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 6

c) give code for the pushback member. [5]

void vector::push_back(double d)

// increase vector size by one

// initialize the new element with d

{

// no space: grab some

if (sz==0)

reserve(8);

// no more free space: get more space

else if (sz==space)

reserve(2*space);

// add d at end

elem[sz] = d;

// and increase the size (sz is the number of elements)

++sz;

}

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 7

d) Show how to generalize your vector of double class by writing down the C++ header

file for a template version of vector. . [5]

template<class T> class vector {

int sz; // the size

T* elem; // pointer to the elements

int space; // size+free_space

public:

// default constructor

vector() : sz(0), elem(0), space(0);

// explicit constructor

explicit vector(int s)

:sz(s), elem(new T[s]), space(s) {}

// copy constructor

vector(const vector&);

// copy assignment

vector& operator=(const vector&);

// destructor

~vector() { delete[] elem; }

// get and set

T get(int n){ return elem[n]; }

void set(int n, T v) { elem[n]=v; }

// access: return reference

T& operator[] (int n) { return elem[n]; }

// the current size

int size() const { return sz; }

// add new element

void push_back(T d);

};

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 8

Question 3.1

Write a paragraph explaining the significance of the STL iterator. In your expanation
make reference to the C++ code snippet below:

string str ("Test string");

string::iterator itr;

for (itr=str.begin() ; itr < str.end(); itr++)

cout << *itr;

[6]

At a high level, an iterator is like a cursor in a text editor. An

iterator has a well-defined position inside a container, and can

move from one element to the next. Also like a cursor, an iterator

can be used to read or write a range of data one element at a time.

Every STL container class exports a member function begin() which

yields an iterator pointing to the first element of that container.

By initializing the iterator to str.begin(), we indicate to the C++

compiler that the itr iterator will be traversing elements of the

string container str.

Each STL container exports a special member function called end()

that returns an iterator to the element one past the end of the

container. In this case one char PAST the end of the string str.

The entity *itr is known as an iterator dereference and means the

element being iterated over by itr. As itr traverses the elements

of the container, it will proceed from one element to the next in

sequence until all of the elements have been visited. At each step,

the element being iterated over can be yielded by prepending a star

to the name of the iterator. In the above context, we dereference

the iterator to yield the current char of the string str.

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 9

Question 3.2

A function designed to sell half of any stock you feel you own too much of, might be
implemented in this way:

void sellStocks(map<string, int>& stocks, int threshold) {

map<string, int>::iterator curr = stocks.begin();

while (curr != stocks.end()) {

if (curr->second >= threshold) curr->second /= 2;

++curr;

}

}

A function that counts the total number of shares you own would need to traverse the
entirety of the map in a similar way:

int countStocks(const map<string, int>& stocks) {

int stockCount = 0;

map<string, int>::const_iterator curr = stocks.begin();

while (curr != stocks.end()) {

stockCount += curr->second; ++curr;

}

return stockCount;

}

Explain why the second function only requires const access to the map. [5]

In the first snippet we change the values stored in the map whereas

in the second snippet we only need read (or const) access to the map

because we do not alter the map elements.

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 10

Question 4.1

A string is said to be a doubloon if every letter that appears in the string appears exactly
twice. For example, the following strings are all doubloons:

abba, anna, appall, appearer, appeases, arraigning, beriberi,

bilabial, boob, caucasus, coco, dada, deed, emmett, hannah,

horseshoer, intestines, isis, mama, mimi, murmur, noon, otto, papa,

peep, reappear, redder, sees, shanghaiings, toto

Write a C++ function called isDoubloon that returns true if the given string is a doubloon
and false otherwise. [10]

bool isDoubloon(string s){

map<char,int> charCount;

for(int i=0; i<s.size(); ++i){

++charCount[s[i]];

};

for(map<char,int>::iterator itr=charCount.begin(); itr != charCount.end(); ++itr){

if(itr->second != 2) return false;

};

return true;

}

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 11

Question 4.2

Shown below are the first 7 rows of Pascal’s triangle in which each element (apart from
the 1’s) is obtained by summing two elements from the row above.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Write a C++ function, pascalPrint(int n), that given an integer n > 0 will print the first
n rows of Pascal’s triangle. [10]

vector<int> nextRow(vector<int> thisRow){

vector<int> newRow;

if (thisRow.size()==0) {

newRow.push_back(1);

return newRow;

};

newRow.push_back(thisRow[0]);

for(int i=1; i<thisRow.size(); ++i){

newRow.push_back(thisRow[i-1]+thisRow[i]);

};

newRow.push_back(1);

return newRow;

}

void pascalPrint(int n){

vector<int> row;

while(row.size()<n){

row = nextRow(row);

for(int i=0; i<row.size(); ++i){

cout << row[i] << "\t";

}

cout << endl;

}

}

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 12

Question 4.3

Given two sets, A and B, the unMatched elements are those that occur in A but not in B
joined with those that occur in B but not in A.

a) Draw a Venn diagram illustrating the unMatched elements in two arbitrary sets A
and B. [2]

b) Make use of the STL algorithms to construct a C++ function that, given two
set<int> containers, constructs and returns a set<int> container holding the unMatched
elements. [8]

// 2 marks for:

// Venn diagram showing unM(A,B) = Union(A,B) - IntSect(A,B)

set<int> unMatched(set<int> a, set<int> b){

set<int> absd;

set_symmetric_difference(a.begin(), a.end(),b.begin(),b.end(),

inserter(absd, absd.begin()));

// btw: this wont work;

// set_symmetric_difference(a.begin(), a.end(),b.begin(),b.end(),

// absd.begin());

return absd;

}

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 13

Question 5.1

Study the following C++ mystery function and describe what it is supposed to do. In
particular explain the use of STL containers, iterators and algorithms in the design of
mystery. [10]

bool isNotAlphaOrSpace(char ch) {

return !isalpha(ch) && !isspace(ch);

}

bool mystery(string input) {

input.erase(remove_if(input.begin(), input.end(), isNotAlphaOrSpace),

input.end());

transform(input.begin(),input.end(), input.begin(), ::toupper);

stringstream tokenizer(input);

vector<string> tokens;

tokens.insert(tokens.begin(), istream_iterator<string>(tokenizer),

istream_iterator<string>());

return equal(tokens.begin(), tokens.begin() + tokens.size() / 2,

tokens.rbegin());

}

Checks whether or not a string is a word palindrome

eg: "five four five" is one.

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 14

Question 5.2

Use the STL to construct a C++ function, reverseWords, that takes in a string of words
and returns a string with the words in reverse order. [10]

For example:

cout << reverseWords("The cat sat on the mat") << endl;

should print:

mat the on sat cat The

string reverseWords(string input) {

stringstream tokenizer(input);

vector<string> tokens;

tokens.insert(tokens.begin(), istream_iterator<string>(tokenizer),

istream_iterator<string>());

string output;

while(tokens.size()>0){

output += tokens.back()+" ";

tokens.pop_back();

};

return output;

}

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 15

Question 5.3

You have been requested to design an offline spellChecker that implements the following:

The dictionary is stored in a file.

The text to check is stored in a file.

Each word of the text should be checked against the dictionary.

Every word in the text not found in the dictionary should be displayed.

You decide to use the STL to accomplish this task. Describe with explanation those parts
of the STL suited to the implementation of an offline spellChecker. [10]

// read all words in dictionary and store in:

set<string> dWords;

string word;

string inFileName = dictionaryFilePath;

ifstream ifs(inFileName.c_str());

(2) while (ifs >> word){

word=toLowerCase(word);

dWords.insert(word);

};

ifs.close();

(1) // do the same for words in text and store in:

set<string> tWords;

// compute "difference"

set<string> badWords;

(4) set_difference(tWords.begin(), tWords.end(),

dWords.begin(), dWords.end(),

inserter(badWords, badWords.begin()))

// copy to output

(2) copy(badWords.begin(), badWords.end(),

ostream_iterator<string>(cout, "\n"));

(1) // note that use of set ensures minimal comparisons

// and that final output is ordered

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 16

vector API

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 17

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 18

map API

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 19

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 20

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 21

STL algorithms

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 22

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 23

UKZN (pmb campus) Examinations: June 2011.
Advanced Programming (COMP315) 24

