COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 1

STUDENT NUMBER: . .. oo,

MARK: /50 = Y.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 2

Question 1

Assuming that vector<int> vec is an STL vector of integers and assuming that the integers currently
stored in vec are unique and stored in ascending order, write a C++ code segment that will insert a new
integer newInt into vec retaining the uniqueness and ordering properties.

For example if newInt = 7 and if vec contains 3, 6, 13, 15, 19 before the code segment is exe-
cuted then after the segment is executed vec should contain 3, 6, 7, 13, 15, 109.

// assuming.....

vector<int> myInts;

int newInt = rand();

// we can inset newInt and keep myInts orded using.............
vector<int>::iterator p=lower_bound (myInts.begin(),myInts.end(),newlnt);
if(p == myInts.end() || *p != newInt) myInts.insert (p,newlnt);

What other STL container would make this task easier? Explain why!

// a set<int> is an ordered collection of ints

// The STL maintains the ordering for us

// assuming.....

set<int> ints;

int newInt = rand();

// we can inset newInt and keep myInts orded using.............
ints.insert (newInt);

(7]

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 3

Question 2

In the game of snakes a snake like object moves on a two dimensional grid eating food and growing longer.
The snake must not bump into walls or itself while moving.

What STL container would you choose to represent a snake? Explain why your choice is appropriate.

\\ use a double ended queue of grid coordinates

struct pointT {
int row, col;

i
deque<pointT> snake;

\\ this allows you to move the snake by pushing a new
\\ grid position on the front of the snake and poping
\\ the last position off the tail of the snake

Give a code segment that indicates how you would move your snake to a new tile in the snakes world
assuming that the tile in question is empty (NOT food wall or snake) and borders the current snake head.

// assume that the world is an array of strings
// each char in a string is drawn from a set of game tiles
vector<string> world;

// assume that we want to move the head to a new coordinate
pointT nextHead = snake.front();

nextHead.row += dy;

nextHead.col += dx;

// update the world and snake queue with the new head position
world[nextHead.row] [nextHead.col] = snakeTile;
snake.push_front (nextHead) ;

// update the world and snake queue by removing the tail
world[snake.back () .row] [snake.back () .col] = emptyTile;
snake.pop_back () ;

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 4

Question 3

Construct a C++ function that, given a string representing a valid £ilePath to a text, makes use of
map<char, int> from the Standard Template Library to compute and return the most commonly used
alphabetic character in the text. [10]

char mostCommonChar (string filePath) {

// load the file into vector of chars

ifstream book (filePath);

vector<char> chars;

copy (istream_iterator<char> (book), istream_iterator<char>(),
inserter (chars, chars.begin()));

// throw away non-alpha chars
chars.erase (remove_if (chars.begin(), chars.end(), IsNotAlpha),
chars.end());

// convert remainder to lower case
transform(chars.begin(), chars.end(), chars.begin(), ::tolower);

// count occurence of each lower case letter using map
map<char,int> cMap;
for (int 1i=0; i<chars.size(); ++1i) {
++cMap[chars[i]];
}i

// mind char with max count

int max = cMapl[’a’];
char best = "a’;
for (map<char,int>::iterator mi = cMap.begin(); mi !'= cMap.end(); ++ mi)

if (mi->second > max) {
max = mi—->second;
best = mi->first;
}i
}i

// return most pop char
return best;

{

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 5

Question 4

The median of a collection of data is the value that is greater than half the elements in the collection and
less than half the elements in a collection. For data collections with an odd number of elements, this is the
middle element when the elements are sorted, and for data collections with an even number of elements
it is the average of the two middle elements when the elements are sorted. Write a C++ function that
computes the median of a vector<double> collection.

double median (vector<double> wvec) {
sort (vec.begin(),vec.end());
if (vec.size()%2 == 1) return vec|[vec.size()/2];
else return (vec[vec.size()/2-1]+vec([vec.size()/2])/2.0;

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 6

Question 5

If (z(t), y(t)) with a < ¢ < bis a parametrization of a simple closed curve C' then Green'’s theorem tells us
that the area enclosed by the curve can be computed via:

b
area(©) = | [[aal= 3 § @iy —yaa)l = 31 [@' ® -0’ @)

Use this result to show that if a simple closed polygon P has n vertices in the =y plane given by (x;, y;)
withi=1...nand (z1,y1) = (2, y,) then the area enclosed by P can be computed via:

1 n—1
area(P) = 5” Z(ﬂfz’yiﬂ — zip1yi)|
1

Consider the segment from (x;, yi) to (z;41, ¥i+1). Parameterize this segment as:

(x(t),y(t) = (i, yi) + H(Tiv1 — T, Yiv1 — Yi) with 0<t<1

then the contribution of this segment to the area can be calculated by:

1 1
/ (@()y'(t) — y(t)2'(t))dt = / (@i + t(@ipr — 26)) (Wirr — ¥s) — Wi + 1y — ¥:)) (@ig1 — xi)dt
0 0
and after a little algebra this reduces to

1
§($iyi+1 - $i+1yz‘)-

Summing over all segments the result follows.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 7

Question 6

Make use of the result from the previous question to construct a C++ STL program that reads pairs of xy
coordinates from the keyboard and then computes the area enclosed by a polygon whose vertices are at
those coordinates. You may assume that the polygon so described is simple (no intersections) and closed
(last point = first point)

For example if the input to the program is:

= o o=

o o oo
i N
o o oo

then the area is calculated as:

area:%H(lx1)—(1><5)+(5><4)—(5><1)+(5x1)—(4><1)||:6

as expected [10]

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011

Question 6, more space

#include <iostream>
#include <algorithm>
#include <numeric>
#include <iterator>
#include <vector>
#include <fstream>
#include <cctype>

using namespace std;

int main () {

// Reading coords

vector<double> coords;

copy (istream_iterator<double> (cin), istream_iterator<double> (),
inserter (coords, coords.begin()));

// split into x and y components
// let me know if you can do this using STL (ie without loops)
vector<double> xC;
vector<double> vyC;
for (int k=0; k<coords.size(); ++k){
if (k%2 ==) xC.push_back (coords[k]);
else yC.push_back (coords[k]);
}i

// rotate x and y components 1 position
vector<double> xRc = xC;
vector<double> yRc = yC;
rotate (xRc.begin (), xRc.begin()
rotate (yRc.begin (), yRc.begin ()

+ 1, xRc.end());
+ 1, yRc.end());
// drop last element from all 4 vectors
xC.pop_back () ;
yC.pop_back () ;
xRc.pop_back () ;
yRc.pop_back ()

14

// compute the two inner products
double pa = inner_product (xC.begin(),xC.end(),yRc.begin(),0.0);
double na = inner_product (yC.begin(),yC.end(),xRc.begin(),0.0);

// comput and display area
double area = (pa-na)/2.0;
cout << "area = " << area << endl;

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 9

vector API

Constructor: vector<I> ()

vector<int> myvVector:

Constructs an empty vector.

Constructor: vector<I> (size type size)

vector<int> myWVector(ld):

Constructs a vector of the specified size where all elements
use their default values (for integral types, this is zero).

Constructor: wector<T> (size type size,

const Te default)

vector<string> myVector (5, "blank"™):

Constructs a vector of the specified size where each ele-
ment is equal to the specified default value.

gize_typs size() const;

for{int i = 0; i < myVector.size(); ++i) { ... }

Returns the number of elements in the vector.

bool empty () const;

while('!'myVector.emptyv ())

Returns whether the vector is empty.

id clear():

myVector.clear():

Erases all the elements in the vector and sets the size to
Zero.

ocperator [] (size_type position);
operator [] (size_type position)

at(size_type position):
at(size_type position) const;

myVector[d] = 100;

int X = myVector[0];
myVector.at({d) = 100;
int ¥ = myvector.at(0);

Returns a reference to the element at the specified position.
The bracket notation [] does not do any bounds checking
and has undefined behavior past the end of the data. The at
member function will throw an exception if you try to ac-
cess data beyond the end. We will cover exception hand-
ling in a later chapter.

(iteratocr positicn);

b1~
tor erase(iterator start,

begin()):

, endItr);

The first version erases the element at the position pointed
to by position. The second version erases all elements in the
range [startItr, endlItr). Note that this does not erase
the element pointed to by endItz. All iterators after the re-
move point are invalidated. If using this member function
on a deque [see below), all iterators are invalidated.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 10

Resizes the vector so that it's guaranteed to be the specified
size. In the second wversion, the wvector elements are ini-
tialized to the wvalue specified by the second parameter
Elements are added to and removed from the end of the
vector, 50 you can't use r=size to add elements to or remove
elements from the start of the vector.

o

roid push_backi):

myVector.push_back({100) ;

Appends an element to the vector.

Ta backi};

ctor.back()
lastElem = my"

myVector. front () ;

COnstT i const;
Returns a reference to the first element in the vectorn.

wold pop back(): myVector.pop back():
Remowves the last element from the vector.

iterator begini): vector<intkrriterator itr = myVector.bsgin():

COnst_1TErator egln() cConst;
Returns an iterator that points to the first element in the
vector.

iterator endi] while(itr != myVector.endi})):

const_iterator end({) const:
Returns an iterator to the element after the last. The iterat-
or returned by end does not point to an element in the vec-
tor.

iterator insert(iterator position, () + 4, "Hellao™):

conat Te walue); (), 2, "Yo!");
vold inssrtiitsratc STartc,

_typs numCopies,
con3t Te walue);

The first version inserts the specified value into the vector,
and the second inserts numZcopiess copies of the value into
the vector: Both calls invalidate all outstanding iterators for
the vector.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 11

STL algorithms

Type accumulate (Inputltr start, Returns the sum of the elements in the range [start, stop) plus

Inputltr stop, the value of value.
Type walus)

bool binary search(RandomItr start, Performs binary search on the sorted range specified by
RandomItr stop, |[start, stop) and returns whether it finds the element valus. If
ccnst Type&s valus)
- the elements are sorted using a special comparison function, you
must specify the function as the final parameter.

OutItr copy(InputItr start, Copies the elements in the range [start, stop) into the output
Inputltr stop, range starting at cutputStart. copy returns an iterator to one
QutItr outputStart) , -7
past the end of the range written to.

size_t count (Inputltr start, Returns the number of elements in the range [start, stop) equal
InputItr end, to valus
const Types values)

size_t count_if (InputItr start, Returns the number of elements in the range [start, stop) for

InputItr end,

- =] . |which £r returns true. Useful for determining how many elements
PredicateFunction fn)

have a certain property.

bool equal (InputItr startl, Returns whether elements contained in the range defined by
Inputltr S::‘Fl’ﬂ [startil, stopl) and the range beginning with start2 are scual. If
Inputltr starts vou have a special comparison function to compare two elements,
vou can specify it as the final parameter.

pair<RandomItr, RandomItr> Returns two iterators as a pair that defines the sub-range of ele-

equal_range [ia:j-:mzir E'Eart' ments in the sorted range [start, stop) that are equal to valus.
SAandomiTY STOop, .

; In other words, every element in the range defined by the returned

const Types wvalue) . ;) . . .
iterators is equal to valu=. You can specify a special comparison
function as a final parameter.

void fill(ForwardItr start, Sets every element in the range [start, stop) to value.

ForwardItr stop,
const Type& valus)

void fill n(ForwardItr start, Sets the first num elements, starting at start, to valus.
size_t num,
const Types walue)
InputItr find(Inputltr start, Returns an iterator to the first element in [start, stop) that is

Inputitr stop,

equal to valus, or stop if the value isn't found. The range doesn't
const Types& wvalus)

need to be sorted.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 12

InputItr find if (Imputltr start, Returns an iterator to the first element in [start, stop) for which
Inputltr stop, fn is true, or stop otherwise.
PredicateFunc fn) }

Function for sach(Inputltr start, Calls the function £n on each element in the range [stazrt, stop).

InputItr stop,
Function £n)

void generate (ForwardItr start, Calls the zero-parameter function fn once for each element in the
Forwardltz stop, range [start, stop), storing the return values in the range.
Fenerator fn); N
volid generate n(Outputltr start, Calls the zero-parameter function £n n times, storing the results in
size t n,

Gensrator fn);

the range beginning with start.

includes {(InputItr

startl,

_ Returns whether every element in the sorted range
Inputltr stopl, [startZ, stop2) is also in [startl, stopl). If you need to use a
InputItr starti,
InputItr stop2) special comparison function, you can specify it as the final para-
S o meter.

Type inner product iEnPEtI‘u‘—' Siﬂr?lf Computes the inner product of the values in the range [startl,
:nput;:: SI’E‘PLL stop1l) and [start2, start2 + (stopl - start1)). The inner product is
lnpu TI STarcs,]

Typs initialValus) |the value » a;b;+initialValue , where a; and b; denote the ith ele-
i=I
ments of the first and second range.

b'Z'C".— o _ Returns whether the range of elements defined by [=1, =2] is lex-
lexicographical compare i;npu:;tr ==+ licographically less than [£1, £2); that is, if the first range precedes

nputItr s2, . W e N

InputItr tl, the second in a "dictionary ordering.

InputItr t2

Inputltr Returns an iterator to the first element greater than or equal to the

lower bound(InputItr start,

InputItr stop,

element =lem in the sorted range [start, stop). If you need to use
a special comparison function, you can specify it as the final para-

const Types elem)
vE=s ' meter.
InputItr max_slement (InputItr start, |Returns an iterator to the largest value in the range [start, stop).
InputItr stop) If you need to use a special comparison function, you can specify it
as the final parameter.
InputItr min_slement (InputItr start, |Returns an iterator to the smallest value in the range
InputItr stop)

[ztart, stop). If you need to use a special comparison function,
yvou can specify it as the final parameter.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 13

void randocm shuffle (RandomItr start,
RandomItr stop)

Randomly reorders the elements in the range [start, stop).

ForwardItr remove (ForwardItr start,
ForwardItr stop,
const Types walue)

Removes all elements in the range [start, stop) that are equal to
wvalues. This function will mot remove elements from a container
To shrink the container, use the container's sras= function to erase
all values in the range [retValus, end ()], where retValus= is the
return value of remove.

ForwardItr

remove if (ForwardItr start,
ForwardItr stop,
FredicateFunc fn)

Removes all elements in the range [stazt, stop) for which £n re-
turns true. See remove for information about how to actually re-
move elements from the container.

vold replace (ForwardItr start,
ForwardItr stop,
const Type& toReplace,
const Type& replaceWith)

Replaces all values in the range [start, stop) that are equal to
toReplace with replaceWith.

void replace if(ForwardItr start,
- ForwardItr stop,
PredicateFunction f£n,
const Types with)

Replaces all elements in the range [start, stop) for which £n re-
turns true with the value with.

ForwardItr rotate (ForwardItr
ForwardItr
ForwardItr

start,
middle,
stop)

Rotates the elements of the container such that the sequence
[middle, stop) is at the front and the range [start, middls) goes
from the new middle to the end. rotate returns an iterator to the
new position of start.

startl,
stopl,
start,
stopl)

ForwardItr search(ForwardItr
ForwardItr
ForwardItr
ForwardItr

Returns whether the sequence [staxrtZ, stopl) is a subsequence
of the range [=tartl, stopl). To compare elements by a special
comparison function, specify it as a final parameter.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10'" of May, 2011 14

Inputltr set_differsnce| _ Stores all elements that are in the sorted range [startl, stopl)
Inputlts startl, but not in the sorted range [start2, stop2) in the destination
Eitit: :E:Eié, pointed to by de=st. If the elements are sorted according to a spe-
InputItr stop2, cial comparison function, you can specify the function as the final
OutItr dest) parameter.

Inputltr set_interssction| Stores all elements that are in both the sorted range
Inputltr startl, [startl, stopl) and the sorted range [start2, stop2) in the des-
Eititz :E:Eié r tination pointed to by d==t. Ifthe elements are sorted according to
Inputltr stop2, a special comparison function, vou can specify the function as the
outItr dest) final parameter.

Inputltr s=t_union | Stores all elements that are in either the sorted range
Inputltr startl, [startl, stopl) orin the sorted range [startZ, stopZ) in the des-
Eitii: :Ejiig r tination pointed to by d==t. Ifthe elements are sorted according to
Inputltr stop2, a special comparison function, you can specify the function as the
outItr dest) final parameter.

Inputltr set_symmetric difference | Stores all elements that are in the sorted range [startl, stopl) or
IRputitr start., in the sorted range [start2, stop2), but not both, in the destina-
EEE;;E: :Ejiié, tion pointed to by d=st. If the elements are sorted according to a
InputItr stop2, special comparison function, you can specify the function as the fi-
outItr dest) nal parameter.

vold swap(Valuss one, Values two) Swaps the values of on= and two.

ForwardItr

swap ranges (ForwardItr startl,
ForwardItr stopl,
ForwardItr startl)

Swaps each element in the range [ztartl, =topl) with the corres-
pond elements in the range starting with start2.

OutputItr transform(InputItr start,
InputItr stop,
CutputItr dest,

Applies the function fn to all of the elements in the range
[start, =top) and stores the result in the range beginning with
de=st. The return value is an iterator one past the end of the last

Function £mn) .
value written.
RandomItr) Returns an iterator to the first element in the sorted range
upper_bound (RandomItr STart, |[start, stop) that is strictly greater than the value val. If you
RandomTtr stop,

const Types val)

need to specify a special comparison function, you can do so as the
final parameter.

