
COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 1

NAME:

STUDENT NUMBER:

MARK: /50 = %.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 2

Question 1

Assuming that vector<int> vec is an STL vector of integers and assuming that the integers currently
stored in vec are unique and stored in ascending order, write a C++ code segment that will insert a new
integer newInt into vec retaining the uniqueness and ordering properties.

For example if newInt = 7 and if vec contains 3, 6, 13, 15, 19 before the code segment is exe-
cuted then after the segment is executed vec should contain 3, 6, 7, 13, 15, 19. [7]

// assuming.....
vector<int> myInts;
int newInt = rand();
// we can inset newInt and keep myInts orded using.............
vector<int>::iterator p=lower_bound(myInts.begin(),myInts.end(),newInt);
if(p == myInts.end() || *p != newInt) myInts.insert(p,newInt);

What other STL container would make this task easier? Explain why! [3]

// a set<int> is an ordered collection of ints
// The STL maintains the ordering for us
// assuming.....
set<int> ints;
int newInt = rand();
// we can inset newInt and keep myInts orded using.............
ints.insert(newInt);

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 3

Question 2

In the game of snakes a snake like object moves on a two dimensional grid eating food and growing longer.
The snake must not bump into walls or itself while moving.

What STL container would you choose to represent a snake? Explain why your choice is appropriate. [5]

\\ use a double ended queue of grid coordinates

struct pointT {
int row, col;

};

deque<pointT> snake;

\\ this allows you to move the snake by pushing a new
\\ grid position on the front of the snake and poping
\\ the last position off the tail of the snake

Give a code segment that indicates how you would move your snake to a new tile in the snakes world
assuming that the tile in question is empty (NOT food wall or snake) and borders the current snake head.

[5]

// assume that the world is an array of strings
// each char in a string is drawn from a set of game tiles
vector<string> world;

// assume that we want to move the head to a new coordinate
pointT nextHead = snake.front();
nextHead.row += dy;
nextHead.col += dx;

// update the world and snake queue with the new head position
world[nextHead.row][nextHead.col] = snakeTile;
snake.push_front(nextHead);

// update the world and snake queue by removing the tail
world[snake.back().row][snake.back().col] = emptyTile;
snake.pop_back();

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 4

Question 3

Construct a C++ function that, given a string representing a valid filePath to a text, makes use of
map<char, int> from the Standard Template Library to compute and return the most commonly used
alphabetic character in the text. [10]

char mostCommonChar(string filePath){

// load the file into vector of chars
ifstream book(filePath);
vector<char> chars;
copy(istream_iterator<char>(book), istream_iterator<char>(),

inserter(chars, chars.begin()));

// throw away non-alpha chars
chars.erase(remove_if(chars.begin(), chars.end(), IsNotAlpha),
chars.end());

// convert remainder to lower case
transform(chars.begin(), chars.end(), chars.begin(), ::tolower);

// count occurence of each lower case letter using map
map<char,int> cMap;
for (int i=0; i<chars.size(); ++i) {

++cMap[chars[i]];
};

// mind char with max count
int max = cMap[’a’];
char best = ’a’;
for (map<char,int>::iterator mi = cMap.begin(); mi != cMap.end(); ++ mi) {

if (mi->second > max) {
max = mi->second;
best = mi->first;

};
};

// return most pop char
return best;

}

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 5

Question 4

The median of a collection of data is the value that is greater than half the elements in the collection and
less than half the elements in a collection. For data collections with an odd number of elements, this is the
middle element when the elements are sorted, and for data collections with an even number of elements
it is the average of the two middle elements when the elements are sorted. Write a C++ function that
computes the median of a vector<double> collection. [5]

double median(vector<double> vec){
sort(vec.begin(),vec.end());
if (vec.size()%2 == 1) return vec[vec.size()/2];
else return (vec[vec.size()/2-1]+vec[vec.size()/2])/2.0;

}

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 6

Question 5

If (x(t), y(t)) with a ≤ t ≤ b is a parametrization of a simple closed curve C then Green’s theorem tells us
that the area enclosed by the curve can be computed via:

area(C) = ‖
∫ ∫

G

dA‖ =
1
2
‖

∮
C

(xdy − ydx)‖ =
1
2
‖

∫ b

a

(x(t)y′(t)− y(t)x′(t))dt‖.

Use this result to show that if a simple closed polygon P has n vertices in the xy plane given by (xi, yi)
with i = 1 . . . n and (x1, y1) = (xn, yn) then the area enclosed by P can be computed via:

area(P) =
1
2
‖

n−1∑
1

(xiyi+1 − xi+1yi)‖

[5]

Consider the segment from (xi, yi) to (xi+1, yi+1). Parameterize this segment as:

(x(t), y(t)) = (xi, yi) + t(xi+1 − xi, yi+1 − yi) with 0 ≤ t ≤ 1

then the contribution of this segment to the area can be calculated by:

∫ 1

0

(x(t)y′(t)− y(t)x′(t))dt =
∫ 1

0

(xi + t(xi+1 − xi))(yi+1 − yi)− (yi + t(yi+1 − yi))(xi+1 − xi)dt

and after a little algebra this reduces to

1
2
(xiyi+1 − xi+1yi).

Summing over all segments the result follows.

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 7

Question 6

Make use of the result from the previous question to construct a C++ STL program that reads pairs of xy
coordinates from the keyboard and then computes the area enclosed by a polygon whose vertices are at
those coordinates. You may assume that the polygon so described is simple (no intersections) and closed
(last point = first point)

For example if the input to the program is:

1.0 1.0
5.0 1.0
5.0 4.0
1.0 1.0

then the area is calculated as:

area =
1
2
‖(1× 1)− (1× 5) + (5× 4)− (5× 1) + (5× 1)− (4× 1)‖ = 6

as expected [10]

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 8

Question 6, more space

#include <iostream>
#include <algorithm>
#include <numeric>
#include <iterator>
#include <vector>
#include <fstream>
#include <cctype>

using namespace std;

int main() {

// Reading coords ...
vector<double> coords;
copy(istream_iterator<double>(cin), istream_iterator<double>(),

inserter(coords, coords.begin()));

// split into x and y components
// let me know if you can do this using STL (ie without loops)
vector<double> xC;
vector<double> yC;
for (int k=0; k<coords.size(); ++k){

if (k%2 == 0) xC.push_back(coords[k]);
else yC.push_back(coords[k]);

};

// rotate x and y components 1 position
vector<double> xRc = xC;
vector<double> yRc = yC;
rotate(xRc.begin(), xRc.begin() + 1, xRc.end());
rotate(yRc.begin(), yRc.begin() + 1, yRc.end());

// drop last element from all 4 vectors
xC.pop_back();
yC.pop_back();
xRc.pop_back();
yRc.pop_back();

// compute the two inner products
double pa = inner_product(xC.begin(),xC.end(),yRc.begin(),0.0);
double na = inner_product(yC.begin(),yC.end(),xRc.begin(),0.0);

// comput and display area
double area = (pa-na)/2.0;
cout << "area = " << area << endl;

}

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 9

vector API

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 10

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 11

STL algorithms

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 12

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 13

COMP315P1, Advanced Programming, Test Two, Tuesday the 10th of May, 2011 14

