
Advanced Programming with C++

Tim Love,
Cambridge University,

C++ notes for engineers,
adapted by Hugh Murrell,

for Computer Science UKZN.

February 12, 2011

Abstract

This document aims to provide people who have done an introductory
programming course the skills required to write C++ programs.

Contents

1 Introduction 3
1.1 A second programming language . 3
1.2 Web pages and Text books . 4
1.3 The UKZN Teaching labs . 4

1.3.1 Microsoft Windows . 4
1.3.2 Linux . 5

1.4 Major project for 2010 . 5

2 C++ programming constructs 5
2.1 Keywords . 5
2.2 Built-in Types and Enumerations . 5
2.3 Operators . 6
2.4 Selection . 6

2.4.1 if . 6
2.4.2 switch . 7

2.5 Loops . 7
2.5.1 while, do . 7
2.5.2 for . 8

2.6 Aggregation . 9
2.6.1 arrays . 9
2.6.2 structures and classes . 9

2.7 Pointers . 10
2.8 Functions . 11
2.9 Declarations . 13
2.10 Memory Allocation . 14
2.11 Scope and Namespaces . 14
2.12 Exceptions . 15

1

CONTENTS CONTENTS

3 Object-orientated programming 15
3.1 Classes . 16
3.2 Class member privacy . 16
3.3 Friend classes and functions . 17
3.4 A complete example . 17
3.5 Derived classes . 17
3.6 Static members . 18
3.7 Const members . 19
3.8 Static Const members . 19
3.9 Overriding behaviour . 19
3.10 Templates . 19

4 The Standard Library 20
4.1 Iterators . 21
4.2 Strings . 21

4.2.1 Iterators . 21
4.2.2 Size . 22
4.2.3 Routines . 22

4.3 vector . 23
4.4 Queues . 24
4.5 list . 25
4.6 map . 26
4.7 bitset . 27
4.8 valarray . 28
4.9 Algorithms . 29
4.10 Set algorithms . 30
4.11 Using member functions . 31
4.12 Predicates . 31

4.12.1 Creating predicates . 32
4.12.2 Adapters . 32

5 More on Classes 32
5.1 Virtual members . 32
5.2 Abstract Classes . 33
5.3 Redefining operators . 33
5.4 A class definition example . 34
5.5 Redefining [] . 36
5.6 Redefining () . 38
5.7 Redefining -> . 38

6 Input/Output 38
6.1 Simple I/O . 38
6.2 Formatting . 40
6.3 Stream Iterators . 41
6.4 Output of User-Defined types . 41
6.5 Input of User-Defined types . 41
6.6 String streams . 41

7 Odds and Ends 42
7.1 Casts . 42
7.2 Limits . 43
7.3 Performance . 43
7.4 Maths . 43
7.5 Hardware Interfacing: bit operations and explicit addresses 46

2

Advanced Programming with C++ 1 INTRODUCTION

7.6 Using routines from other languages 46
7.6.1 C . 46
7.6.2 Fortran . 46

7.7 bad habits to give up . 47
7.8 Non-essentials (Things you probably don’t need to know yet) 48

7.8.1 virtual inheritance . 48
7.8.2 typeid . 49
7.8.3 virtual destructors . 49
7.8.4 Auto pointers . 49
7.8.5 operator functions . 49
7.8.6 union . 49
7.8.7 Non-type template parameters 50

8 Program Development 50
8.1 Style . 50
8.2 Makefiles . 51
8.3 Debugging . 52
8.4 Common Difficulties and Mistakes 53

9 CImg, an image processing library for C++ 54
9.1 library structure . 54
9.2 CImg, Hello world . 55
9.3 compiling a CImg application . 56

10 Glossary 57

11 References 58

12 Program listings 59

Listings

1 intTree.cpp, A binary search tree for integers. 59
2 genTree.cpp, A template binary search tree. 61

1 Introduction

1.1 A second programming language

This document is aimed at those who have done two years of Java programming at
UKZN. These Java courses introduced all loop constructions and many operators.
Arrays and data structures were also introduced. All of this was done in an object
oriented setting using Java classes.

However some issues such as software housekeeping (e.g. Makefiles) were glossed
over and hidden behind IDEs. Others, such as templates and many things were
not touched upon at all. Some of these newer things are easy conceptually, and
fundamental to modern C++ programming, though implementation details can be
complicated. The pay-off comes when you use the Standard Library - a library
which exploits advanced C++ features to make life easy for the programmer.

3

Advanced Programming with C++ 1 INTRODUCTION

C++ can be used in various ways: procedural (like Fortran or C) or Object-
orientated (like Java). This document covers the techniques to support each of
these programming paradigms, dealing with

• Namespaces

• Using classes to build new classes - inheritance

• Abstract Classes and Templates

• Using the Standard Library

• Techniques useful when writing big, project-sized programs.

1.2 Web pages and Text books

To aid readability, the examples in the text are mostly code fragments. Full exam-
ples will be posted online at the module’s homepage:

http://www.cs.ukzn.ac.za/ murrellh/ap

Some complete program examples are given in the in the appendix to this text.
Most of these have been adapted from examples on the Ira Pohl website:

http://users.soe.ucsc.edu/ pohl/

Many more complete examples are posted there.

A few programming exercises are suggested in this document. Any computing book
will offer more.

Unless otherwise stated, the page numbers in the margin refer to:

Bjarne Stroustrup, The C++ Programming Language (third edition), AT&T,
1997.

You can get this book from the library or buy your own copy from amazon.

There are also many free books on C++ on the web. For extra reading material
you can download from the advanced programming webpage:

Frank Brokken, C++ Annotations (version 6.5.0)

1.3 The UKZN Teaching labs

Advanced Programming students will either use G21 or the honours lab. Students
can code under Microsoft Windows or Linux.

1.3.1 Microsoft Windows

Here your compiler will be MinGw and your IDE will be Code::Blocks. The CodeBlocksManual
can be downloaded from the course website.

4

http://www.cs.ukzn.ac.za/~murrellh/ap
http://users.soe.ucsc.edu/~pohl/

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

1.3.2 Linux

Here your compiler is g++ and your IDE is Eclipse

1.4 Major project for 2010

At the end of this module you will construct a program that will be written written
using a large library of C++ classes.

In this major project you will try to simulate water flowing over a terrain. As C++
doesn’t have any graphics routines for this project you will make use of the image
processing library CImg to do our graphics work.

your program must initialise a terrain and then dump water on it. At each iteration
the water will flow downhill and the terrain with its current water profile will be
re-rendered.

2 C++ programming constructs

2.1 Keywords

You haven’t been introduced to all of these keywords before. Many you’ll never need.
They’re included here for completeness because you can’t use them for variable
names, etc.

and and eq asm auto bitand bitor
bool break case catch char class
compl const const cast continue default delete
do double dynamic cast else enum explicit
export extern false float for friend
goto if inline int long mutable
namespace new not not eq operator or
or eq private protected public register reinterpret cast
return short signed sizeof static static cast
struct switch template this throw true
try typedef typeid typename union unsigned
using virtual void volatile wchar t while
xor xor eq

2.2 Built-in Types and Enumerations

There are integral types (char, short, int, long) which can be intended to hold
signed (the default) or unsigned values. So for example “unsigned char c” creates
a one-byte variable big enough to hold any integer from 0 to 255. There are also
floating point types (float, double, long double).

5

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

If you want an integer variable to be restricted to containing just a few specific
values you can create an enumerated type

enum user_type {ugrad, pgrad, staff, visitor};

user_type u;

creates an enumerated type called user_type. u can only be set to the values 0, 1,
2 or 3 (or equivalently - and preferably - ugrad, pgrad, staff or visitor). The
values can be set explicitly; for example

enum user_type {ugrad=2, pgrad=7, staff=9, visitor=3};

user_type u;

Enumerated types can be used wherever integer types can be.

2.3 Operators

The lines of the table are in order of precedence, so ‘a * b + 6’ is interpreted as
‘(a * b) + 6’. When in doubt put brackets in!

The Associativity column shows how the operators group. E.g. ‘<’ groups left to
right, meaning that a < b < c is equivalent to (a < b) < c rather than a < (b < c).
Both are pretty useless expressions - (a < b) evaluates to 1 or 0 depending on
whether it’s true or not.

Associativity Operator

left to right ::

left to right () [], ->, ., typeid, casts,
right to left ! (negation), ~ (bit-not)

new, delete ++, --, - (unary) , * (unary), & (unary), sizeof

right to left (type)

left to right *, /, % (modulus)

left to right - +

left to right <<, >>

left to right <, <=, >, >=

left to right ==, !=

left to right & (bit-and), | (bit-or)
left to right ^ (bit-xor)
left to right && (logical and)
left to right || (logical or)
right to left ?:

right to left =, +=, -=, /=, %=, >>=, &=

left to right throw

left to right ,

2.4 Selection

2.4.1 if

...

6

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

if (i==3) // checking for equality; ‘!=’ tests for inequality

// no braces needed for a single statement

j=4;

else{

// the braces are necessary if the

// clause has more than one statement

j=5;

k=6;

}

...

2.4.2 switch

...

// switch is like a multiple ’if’.

// The values that the switching variable is compared with

// have to be constants, or ‘default’.

switch(i){

case 1: printf("i is one\n");

break; // if break wasn’t here, this case will

// fall through into the next.

case 2: printf("i is two\n");

break;

default: printf("i is neither one nor two\n");

break;

}

...

2.5 Loops

Note that if you use the Standard Library’s containers and vectors, explicit loops
might not be needed very much.

2.5.1 while, do

...

while(i<30){ // test at top of loop

something();

...

}

...

do {

something();

} while (i<30); // test at bottom of loop

...

7

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

2.5.2 for

The ‘for’ construction in C++ is very general. In its most common form it’s much
like for in other languages. The following loop starts with i set to 0 and carries on
while i<5 is true, adding 1 to i each time round.

...

for(int i=0; i<5; i=i+1){

something();

}

...

The general form of ‘for’ is

for ([expression1]; [expression2]; [expression3])

something();

where all the expressions are optional. The default value for expression2 (the
while condition) is 1 (true). Essentially, the for loop is a while loop. The above
for loop is equivalent to

...

expression1; // initialisation

while (expression2){ // condition

something();

expression3; // code done each iteration

};

...

E.g. the 2 fragments below are equivalent. ‘i’ is set to 3, the loop is run once for
i=3 and once for i=4, then iteration finishes when i=5.

for (int i = 3; i < 5; i=i+1)

total = total + i;

int i = 3;

while(i < 5){

total = total + i;

i=i+1;

}

Within any of the above loop constructions, continue stops the current iteration
and goes to the next and break stops the iterations altogether. E.g. in the following
fragment 0 and 2 will be printed out.

...

int i=0;

while (i<5){

if (i==1){

i = i+1;

continue;

}

if (i==3)

break;

printf("i = %d\n", i);

8

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

i=i+1;

}

...

If you want a loop which only ends when break is done, you can use ‘while(true)’
or ‘for(;;)’.

2.6 Aggregation

Variables of the same or different types can be bundled together into a single obect.

2.6.1 arrays

Variables of the same type can be put into arrays.

char letter[50];

defines an array of 50 characters, letter[0] being the 1st and letter[49] being
the last character. C++ arrays have no subscript checking; if you go off the end of
an array C++ won’t warn you.

Multidimensional arrays can be defined too. E.g.

char values[50][30][10];

defines a 3D array. Note that you can’t access an element using values[3,6,1];
you have to type values[3][6][1].

The Standard Library offers various alternatives (vector, for example) which are
often preferable to the basic arrays described above because

• They can be made to grow on demand

• Many routines for copying and modifying them exist.

2.6.2 structures and classes

Variables of different types can be grouped into a structure or a class.

class person {

int age;

int height;

string surname;

};

person fred, jane;

9

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

defines 2 objects of type person each of 3 fields. Fields are accessed using the ‘.’
operator. For example, fred.age is an integer which can be used in assignments
just as a simple variable can.

Structure and Class objects may be assigned, passed to functions and returned,
but they cannot compared, so continuing from the above fragment fred = jane;
is possible (the fields of jane being copied into fred) but you can’t then go on to
do

if (fred == jane)

fprintf(stderr, "The copying worked ok\n");

- you have to compare field by field.

Classes can contain member functions as well as data. The data can be made
private so that other objects can’t access it directly.

2.7 Pointers

Even if you don’t use pointers yourself, the code you’ll learn from is likely to have
them. Suppose i is an integer. To find the address of i the & operator is used
(&i). Setting a pointer to this value lets you refer indirectly to the variable i. If
you have the address of a variable and want to find the variable’s value, then the
dereferencing operator * is used.

...
int i=0;
cout << i << " is at memory location " << &i << endl;

// The next statement declares i_ptr to be a pointer at
// an integer. The declaration says that if i_ptr is
// dereferenced, one gets an int.

int *i_ptr;
i_ptr = &i; // initialise i_ptr to point to i

// The following 2 lines each set i to 5
i = 5;
*iptr = 5; // i.e. set to 5 the int that iptr points to

Pointers aren’t just memory addresses; they have types. A pointer-to-an-int is of
type int*, a different type to a pointer-to-a-char (which is char*). The difference
matters especially when the pointer is being incremented; the value of the pointer
is increased by the size of the object it points to. So if we added

iptr=iptr+1;

in the above example, then iptr wouldn’t be incremented by 1 (which would make
it point somewhere in the middle of i) but by the length of an int, so that it would

10

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

point to the memory location just beyond i. This is useful if i is part of an array.
In the following fragment, the pointer steps through an array.

...
int numbers[10];

numbers[0] = 1;
numbers[1] = 2;
numbers[2] = 3;

int *iptr = &numbers[0]; // Point iptr to the first element in numbers[].
// A more common shorthand is iptr = numbers;

// now increment iptr to point to successive elements
for (int i=0; i<3; i++){

printf("*iptr is %d\n", *iptr);
iptr= iptr+1;

}
...

Pointers are especially useful when functions operate on structures. Using a pointer
avoids copies of potentially big structures being made.

typedef struct {
int age;
int height;
string surname;

} person;

person fred, jane;

int sum_of_ages(person *person1, person *person2){
int sum; // a variable local to this function

// Dereference the pointers, then use the ‘.’ operator to get the
// fields
sum = (*person1).age + (*person2).age;
return sum;

}

Operations like (*person1).age are so common that there’s a special, more natural
notation for it: person1->age.

2.8 Functions

The form of a function definition is

<function return type> <function name> (<formal argument list>)
{
<local variables>

11

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

<body>
}

E.g.

int mean(int x, int y)

{

int tmp;

tmp = (x + y)/2;

return tmp;

}

or, if the function is a member of class stats, ::, the scope resolution operator can
be used to specify which particular function of that name to access.

int stats::mean(int x, int y)

{

int tmp;

tmp = (x + y)/2;

return tmp;

}

You can provide default values for the trailing arguments. E.g.

int mean(int x, int y=5)

{

int tmp;

tmp = (x + y)/2;

return tmp;

}

...

int foo=mean(7)

is legal, setting foo to 6.

You can have more than function of a particular name provided that the compiler
knows unambiguously which one is required for a function call, so the functions
with identical names have to take different arguments or must only be visible one
at a time. It’s not enough for functions to differ only in the return type.

By default, the variables given to a function won’t have their values changed when
the function returns. In the following fragment number won’t be increased to 6.

void add (int x)

{

x = x+1;

}

int number = 5;

add(number);

12

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

When add(number) is called, the x variable is set to the current value of number,
then incremented, but number is unchanged. The following slight variation that
uses “call by reference” will increase number

void add(int& x)

{

x = x+1;

}

int number = 5;

add(number);

2.9 Declarations

First, a note on terminology. A variable is defined when it is created, and space
is made for it. A variable is declared when it already exists but needs to be re-
described to the compiler (perhaps because it was defined in another source file).
Think of declaring in C++ like declaring at customs – admitting to the existence
of something. In C++ you can only define a variable once but you can declare it
many times.

C++ declarations are not easy to read. You shouldn’t need to use complicated
declarations so don’t worry too much if you can’t ‘decode’ them. Keep a cribsheet
of useful ones The following examples show common declarations.

int *p pointer to an int
int x[10] an array of 10 ints
const int *p pointer to a constant int
int * const p a constant pointer to an int
int (*x)[10] a pointer to an array of 10 ints
int *x[10] array of 10 pointers to ints
int (*f)(int) pointer to a function taking and returning an int
void (*f)(void) pointer to a function taking no args and returning nothing
int (*f[])(int) An array of pointers to a functions taking and returning an int

Note the importance of the brackets in these declarations. On the Teaching System
the c++decl program can help. E.g.

c++decl explain "char *&x"

prints

declare x as reference to pointer to char

typedef can be used to create a shorthand notation for a verbose type.

typedef int (*PFI)(int) // declare PFI as pointer to function that
// takes and returns an int.

PFI f[]; // declare f as an array of pointers of type ’PFI’.

13

Advanced Programming with C++ 2 C++ PROGRAMMING CONSTRUCTS

2.10 Memory Allocation

Space is automatically set aside for variables when they are defined, but sometimes
you don’t know beforehand how many variables you’ll need or just how long an
array might need to be. The Standard Library copes with such situations but you
may need to deal with things yourself.

The new command creates space “on the fly”. new[] creates arrays. There are
corresponding delete and delete[] calls.

int i; cout <<"Type an integer "; cin >> i; int *ia = new int[i];

creates an integer array of the required size that can be destroyed by

delete[] ia;

If there’s not enough memory for new to provide what you want, it will cause a
bad_alloc exception (see section 2.12 for details).

2.11 Scope and Namespaces

A namespace is like a class that has no functionality. Stroustrup uses them a lot.
They’re a way of controlling scope - the part of the program where the entity has
a meaning. The more localised variables are the better. There’s

• file scope - entities can be made visible only to entities in the same file.

• function scope - entities can be made visible only to the function they’re
created in.

• block scope - delimited by ’{’ and ’}’.

• class scope - entities can be made visible only to the class they’re created in.

• namespaces - You can put an entity into a namespace by doing something
like

namespace test {

int i;

}

then using test::i to access the variable. The command “using namespace test”
will make all the entities in the namespace available for the rest of the unit
that the statement is in, without the “test::” being necessary. It’s tempt-
ing to put “using namespace std” at the top of each file to access all the
standard routines, but this “pollutes the global namespace” with many rou-
tine names you’ll never use, so consider using more specific commands like
“using std:string”

It’s possible for a local variable to mask a global variable of the same name. If, in a
function that has a local variable i you want to access a global variable i, you can
use ::i, but it’s better to avoid such nameclashes in the first place.

14

Advanced Programming with C++3 OBJECT-ORIENTATED PROGRAMMING

2.12 Exceptions
p.356

In C every call had to be checked for error values - which could double the code
size. C++ exceptions are an alternative to traditional techniques when they are
insufficient, inelegant, and error-prone. Three keywords are involved

try - specifies an area of code where exceptions will operate

catch - deals with the exceptional situation produced in the previous try clause.

throw - causes an exceptional situation

When an exception is ’thrown’ it will be ’caught’ by the local “catch” clause if one
exists, otherwise it will be passed up through the call hierarchy until a suitable
catch clause is found. The default response to an exception is to terminate.

There are many types of exception - they form a class hierarchy of their own. Here
just a few will be introduced.

try {

// code

}

// catch a standard exception

catch(std:exception& e){

// order of the catch clauses matters; they’re tried

// in the given order

}

// catch all the other types

catch(...) {

// cleanup

throw; // throw the exception up the hierarchy

}

Here’s an example that sooner or later will produce an exception. p.128

try{

for(;;)

new char[10000];

} catch(bad_alloc) {

cerr << "No memory left";

}

A useful exception is out_of_range (header <stdexcept>), which is thrown by at()
and by bitset<>::operator[]().

Exception handling code can slow a program down even when no exceptions happen.
The code size will also increase.

3 Object-orientated programming

Object-orientated languages support to a greater or lesser extent the following con-
cepts

15

Advanced Programming with C++3 OBJECT-ORIENTATED PROGRAMMING

• Encapsulation (including in an object everything it needs, hiding elements
that other objects needn’t know about). This keeps data and related routines
together and unclutters the large-scale organisation of the program. Each
object has a ’public’ set of routines that can be called, and these routines are
all that other objects need to know.

• Inheritance (creating new types of objects from existing ones). Rather than
having many seemingly unrelated objects, objects can be organised hierarchi-
cally, inheriting behaviour. Again, this simplifies the large-scale organisation.

• Polymorphism (different objects responding to the same message in different
ways). Rather than having a different routine to do the same thing to each of
many different types of objects, a single routine does the job. An example of
this is how the + operator can be overloaded in C++ so that it can be used
with new classes.

Using an Object-orientated language often means that

• program entities can more closely model real-world entities. As Stroustrup
wrote, “For small to medium projects there often is no distinction made be-
tween analysis and design: These two phases have been merged into one.
Similarly, in small projects there often is no distinction made between design
and programming.”

• complexity is more localised

• code re-use is easier

3.1 Classes

Classes are at the heart of C++’s object-orientation. Classes are created with data
in them, and constructors (routines that are run when an object is created) and
member functions are associated with a class.

3.2 Class member privacy

Class members can have 3 types of privacy

private - can be used only by member functions and friends

protected - like private except that derived classes have access to them too. Try
not to use this - it can help performance but it breaks encapsulation.

public - available to any function.

By default class members are private. You often want the data to be private (so
that they can’t be tampered with from the outside) but the functions public (so
that they can be called by other objects). If you want other objects to be able to
change the data, write a member function that the objects can call and make sure
that the member function does validity checking. Then other member function that
use the data won’t have to check for validity first.

16

Advanced Programming with C++3 OBJECT-ORIENTATED PROGRAMMING

A private function is often called a helper or utility function because its for the
benefit of other member functions. Note that a member function p.278

1. can access private data

2. is in scope of class

3. must be invoked on an object

If you have the choice of writing a friend or member function, choose a member
function. p.280

Note that structs have no private or protected parts.

3.3 Friend classes and functions

It is sometimes useful to let the functions of one class have access to the components
of another class without making the components public and without the overhead
of having to call member functions to get private data.

The following shows how one class (in this case Another) can let another class (in
this case Base) be a “friend” class

class Another { friend class Base; int value; ... }

For the sake of clarity it’s a good idea to have the friend lines at the start of the
class definition. Note that friendship is granted by the class being accessed, not
claimed by the class wanting access.

A friend may be a non-member function, a member function of another class, or an
entire class. Friends and derived classes differ in that derived classes might not be
able to access all the members of the base class.

3.4 A complete example

The intTree class, given in the appendix, is an example of a class built from scratch.
The intTree class makes use of a binary node class, bnode to hold and integer and
a count and pointers to left and right branches of a binary tree. intTree has a
constructor, intTree, and three member functions, find, insert and print.

The code shown here has no destructor defined. As an exercise try to find out
what happens to memory after repeated use of intTree and insert the appropriate
destructors to rectify matters.

3.5 Derived classes

The more you use C++ the more you’ll be developing classes which require greater
sophistication. Often you’ll need to add extra functionality to an existing class.
C++ provides a mechanism to build new classes from old ones

17

Advanced Programming with C++3 OBJECT-ORIENTATED PROGRAMMING

class More : public Base {

int value;

...

};

Here More inherits the members of Base. The public keyword means that the
members of Base are as accessible to More as Base allows. By default derivation
is private (which means that even Base’s public members can’t be accessed by
More), but usually derivation should be public, privacy being control by the base Coplien, p.103
class.

When an object of type More is created, first the Base constructor is called, then
More’s constructor. When the object is destroyed, the destructors are called in
reverse order. The constructors/destructors are not inherited, but you can say

More::More(int sz):Base(sz){}

passing arguments to a base member class constructor (or to a number of construc-
tors using a comma-separated list).

A derived class can be assigned to any of its public base classes, so the following is
possible

class More : public Base {

int value;

...

};

Base b;

More m;

b=m;

It will fill the fields of b with the corresponding values in m. However, m=b isn’t
possible.

You can derive new classes from a derived class, and you can derive many different
classes from a base class so you can develop a family tree of related classes. As
we’ll see soon, the “parent” classes can keep parts of themselves private, not only
to unrelated classes but to derived classes too.

Big classes don’t necessarily imply big objects: all objects of a class share member
functions, for instance.

It’s possible for a class to be derived from 2 or more other classes. It’s called Multiple
Inheritance but it introduces complications, so don’t use it unless you know what
you’re doing.

3.6 Static members
p.228

A static member is part of a class, but not part of an object of a class, so there’s
only one instance of them however many objects of that class are created. This is
useful if, for instance, you want to keep a count of how many objects are created.
A static member function

18

Advanced Programming with C++3 OBJECT-ORIENTATED PROGRAMMING

1. can access private data

2. is in scope of class

3. but can’t be invoked on an object - objectname.staticmemberfunction() is im-
possible.

3.7 Const members
p.229

The value of a const data member can’t be changed. A const member function
can’t change the data of the class.

int day() const { return d};

doesn’t modify state of the class.

3.8 Static Const members

Details regarding how to initialise static const members changed late in the C++
specification. A static const data member of integral or enum type can be initialized
in the class definition, but you still need to provide another definition (without an
initializer) for it. So

class C {

const static int csi = 5;

};

const int C::csi;

is legal, but you can’t do the same for floats, non-statics or non-consts. With some
old compilers you have to initialise outside the class.

3.9 Overriding behaviour

As well as adding members a derived class can override behaviour simply by redefin-
ing a member function. For instance, if you are developing objects for a graphics
editor, you’d like each kind of object to have a draw function, but you’d like each
kind of object to have its own version.

Later (section 5) more details of class derivation will be described.

3.10 Templates

A class template is a “type generator”: a way to fabricate many similar classes or
functions from one piece of code. This is how the Standard Library can support
many types of vector, etc. C++’s Templates are parameterized types. They
support generic programming by obviating the need for explicit switch statements
to deal with various data types. Let’s look at an example. The following code swaps
2 integers in the usual C++ way

19

Advanced Programming with C++ 4 THE STANDARD LIBRARY

void swap (int& a, int& b) {

int tmp = a;

a = b;

b = tmp;

}

If you wanted to swap other types of variables (including those you’ve defined) you
could copy this code, replacing int by (say) float. But in situations like this,
where the code is potentially generic, templates can be used.

template <class T>

void swap (T& a, T& b) {

T tmp = a;

a = b;

b = tmp;

}

Here the “T” name is arbitrary (like a formal parameter in a function definition)
and the class keyword can be replaced by the newer typename keyword. Note
that the function is written much as before. When the compiler is now given the
following code

int a = 3, b = 5;

float f=7.5, g=9.5;

swap (a, b);

swap (f, g);

it will create a version (“instantiation”) of swap for each type required. These
versions have nothing in common except that they were created from the same
template - they won’t share members, not even static ones. Templates are an
example of source code re-use not object code re-use.

You can have template functions, but also template classes and derived classes.
In the appendix we give a full listing, genTree.cpp, of the template version of
the binary search tree. The programmer can now create a binary search tree of
integers, characters, strings or any other data type provided a comparator function
is available.

As an exercise, make use of the genTree class to count the occurrences of ascii
characters in any text file. Then adapt your program to count word usage in any
text.

4 The Standard Library

The Standard Library includes container classes: classes whose purpose is to contain
other objects. There are classes for vectors, lists, etc. Each of these classes can
contain any type of object (as long as the object can be copied safely - if it can’t, use
pointers to elements instead). You can, for example, use a vector<int> (meaning p.466
’a vector of ints’) in much the same way as you would use an ordinary C array,
except that vector eliminates the chore of managing dynamic memory allocation
by hand.

20

Advanced Programming with C++ 4 THE STANDARD LIBRARY

vector<int> v(3); // Declare a vector (of size 3 initially) of ints

v[0] = 7;

v[1] = v[0] + 3;

v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 10, v[2] == 17

v.push_back(13); // add another element - the vector has to expand

Note the use of the push_back function - adding elements this way will make the
container expand.

The Standard Library also includes about 70 algorithms that manipulate the data
stored in containers - reverse, insert, unique, transform etc. Note that these opera-
tions act on the elements without explicit use of loops.

To use these features you need to include the corresponding header file. For example,
#include <vector> is needed for vectors.

Read the Standard C++ Library Class Reference .

4.1 Iterators

Iterators are like pointers. They save algorithm writers the worry of having to
deal with the internals of containers. They come in various types: random access,
bidirectional, forward, reverse, input, output. They can be const. Some containers
support only some Iterator types (you can’t for example randomly access a list).
See the documentation for details.

4.2 Strings

In older C++ books and in C books, strings are arrays of characters - C-style
strings. Except when speed is vital, C++ strings are preferable to these. For
some operators (concatenation, for example) strings may be a lot faster than C’s
character arrays. Also

• They grow on demand

• The Standard Library algorithms work on them

• Other containers use them

• Natural constructions like s=s1+s2; are possible

String objects have many features in common with other Standard Library objects.
Since strings are familiar to you, it’s useful to look at the facilities in more detail
to prepare you for other Standard Library components.

4.2.1 Iterators

The following routines provide iterators (pointers) of various kinds, depending on
whether you want to go forwards or backwards through the string and whether you
want to change the string. The same kind of routines exist for vector etc.

21

file://localhost/opt/aCC/html/libstd/classref.htm

Advanced Programming with C++ 4 THE STANDARD LIBRARY

// Iterators - note the various types

iterator begin();

const_iterator begin() const;

iterator end();

const_iterator end() const;

reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

reverse_iterator rend();

const_reverse_iterator rend() const;

4.2.2 Size

These routines (similar ones exist for other containers) give you size information. p.456
reserve() doesn’t change size or initialize elements - resize() does. capacity()
− size() = reserved size.

// Capacity

size_type size() const;

size_type length() const;

size_type max_size() const;

void resize(size_type, charT);

void resize(size_type);

size_type capacity() const;

void reserve(size_type);

bool empty() const;

4.2.3 Routines

These string-specific routines (only a selection is shown below) provide the func-
tionality that C people are used to. The names aren’t too hard to remember, and
the default arguments are reasonable. The routines are overloaded, so find can be
used to look for strings, characters or even C-strings.

Note also that the c_str routine returns a C string.

const charT* c_str() const;

size_type find(const basic_string&,

size_type = 0) const;

size_type find(charT, size_type = 0) const;

size_type rfind(const basic_string&,

size_type = npos) const;

size_type rfind(charT, size_type = npos) const;

size_type find_first_of(const basic_string&,

size_type = 0) const;

size_type find_last_of(const basic_string&,

size_type = npos) const;

size_type find_first_not_of(const basic_string&,

size_type = 0) const;

size_type find_last_not_of(const basic_string&,

size_type = npos) const;

basic_string substr(size_type = 0, size_type = npos) const;

int compare(const basic_string&) const;

int compare(size_type, size_type, const basic_string&) const;

22

Advanced Programming with C++ 4 THE STANDARD LIBRARY

The case history (section ??) has many examples of string usage. Here are 2 short
programs -

#include <fstream.h>

#include <string>

int main()

{

string s1= "pine";

string s2= "apple";

cout << "length of s1 is " << s1.length() << endl;

string s3= s1+s2;

cout << "s1 + s2 = " << s3 << endl;

string s4= s3.substr(2,4);

cout << "s3.substr(2,4)=" << s4 << endl;

cout << "s3.find(\"neap\")=" << s3.find("neap") << endl;

cout << "s3.rfind(’p’)=" << s3.rfind(’p’) << endl;

return 0;

}

To get a line of text (that may include spaces) from the user, do p.30

#include <fstream.h>

#include <string>

int main()

{

string str;

cout <<"Type a string\";

getline(cin,str);

cout <<"you typed" << str << endl;

return 0;

}

4.3 vector
p.447

Standard Library Vectors can have various element types and like other containers
can be initialised in various ways:

vector <int> v; // an empty integer vector

vector <int> v(5); // 5 elements, initialised to the default

// value of the elements, in this case 0.

// Vector resizing is expensive, so set to

// the max size if you can.

vector <int> v(5,13); // 5 elements initialised to 13

vector <int> w(v.begin(),v.end()); // initialised from another container.

Many routines are available for vectors. For example, if you have a vector of strings, p.452
you can remove all the strings beginning with ’p’ by doing the following

23

Advanced Programming with C++ 4 THE STANDARD LIBRARY

sort(fruit.begin(), fruit.end());

// create an iterator p1 for use with a vector of strings

// and set it to point to the first string to remove

vector<string>::iterator p1=

find_if(fruit.begin(), fruit.end(), initial(’p’));

// create and set p2 to point to the first string after

// those that begin with ’p’

vector<string>::iterator p2=

find_if(p1, fruit.end(), initial_not(’p’));

// Now erase

fruit.erase(p1, p2);

Note that you can’t do the following (searching from each end of the vector) because
forward and reverse iterators are different types, and you can’t use erase with mixed
types.

sort(fruit.begin(), fruit.end());

vector<string>::iterator p1=

find_if(fruit.begin(), fruit.end(), initial(’p’));

vector<string>::reverse_iterator p2=

find_if(fruit.rbegin(), fruit.rend(), initial(’p’));

fruit.erase(p1, p2);

These above examples use the standard algorithms, which are always useful as a
fallback option, but the vector class has a more specialised routine which is likely
to be faster

fruit.remove_if(initial(’p’));

p.454

Remember that

• vector elements can move! insert, for instance, changes its 1st argument.

• vector doesn’t have arithmetic operations: valarray (which is described
later) does. p.51

• vector doesn’t have range-checking by default.

4.4 Queues

Variations include p.478??

• deque - (pronounced deck) double-ended queue. One of the basic containers.

• queues - items are pushed into the back of the container and removed from
the front. The underlying container can be vector or a deque. The items
can be whatever you like.

// create a message structure

struct Message{ ... }

24

Advanced Programming with C++ 4 THE STANDARD LIBRARY

// wait until an item appears on the queue, then process it.

void server(queue<Message> &q)

{

while(!q.empty()) {

Message& m = q.front();

m.service();q.pop();

}

}

• priority queues - items are pushed into the back of the container and removed
from the front in order of priority. The underlying container can be vector,
amongst other things. In the following example the priority is determined by
comparing the value of the integers in the queue using less.

#include <queue>

#include <vector>

#include <iostream.h>

int main()

{

// Make a priority queue of int using a vector container

priority_queue<int, vector<int>, less<int> > pq;

// Push a couple of values

pq.push(1);

pq.push(7);

pq.push(2);

pq.push(2);

pq.push(3);

// Pop all the values off

while(!pq.empty()) {

cout << pq.top() << endl;

pq.pop();

}

return 0;

}

4.5 list

Lists are useful when items are likely to be inserted/deleted from the middle of long
sequences. This example creates a vector then copies it into a list, reversing as it
does so.

#include <vector>

#include <list>

#include <algorithm>

#include <iostream.h>

int main()

{

vector<int> V;

V.push_back(0);

V.push_back(1);

V.push_back(2);

25

Advanced Programming with C++ 4 THE STANDARD LIBRARY

list<int> L(V.size());

reverse_copy(V.begin(), V.end(), L.begin());

exit(0);

}

4.6 map

A map stores a mapping from one set of data (e.g. Names) to another (e.g. Phone
numbers). The following example shows how to set up an “associative array” – an
array where you can use a string as an index. It records how many times each word
appears on cin, the standard input.

int main()

{

string buf;

map<string, int> m;

while (cin>>buf) m[buf]++;

// write out result (see next example)

}

A map keeps items in order and has no duplicate keys. Variations include p.478??

• hash_map - an unsorted map.

• multi_map - can have duplicate keys

• set - a map with ignored values
p.483

// read in lines of the form

// red 7

// blue 3

// red 4

void readitems(map<string, int>& m)

{

string word;

int val=0;

while(cin>>word>>val) m[word]+=val;

}

int main()

{

map<string, int>tbl;

readitems(tbl);

int total=0;

// We want to create an iterator p for use with this type of map.

// Since we’re not going to change the map values using it,

// we’ll make a const_iterator. We could do this using

// map<string, int>::const_iterator p

// but if we wanted to create other iterators of this type

26

Advanced Programming with C++ 4 THE STANDARD LIBRARY

// it would be tedious. So we use ’typedef’ to make ’CI’ a

// shorthand for the long expression.

typedef map<string, int>::const_iterator CI;

for (CI p=tbl.begin(); p!=tbl.end(); ++p) {

total+=p->second;

cout<<p->first << ’\t’ << p->second << ’\n’;

}

cout << "total\t" << total << endl;

return !cin;

}

Here’s a fragment using multimap showing how to print out all the values associated
a particular key (in this case the string “Gold”). It uses typedef as in the above
example, and the useful equal_range function which returns an iterator to the first
and last elements with a particular key value. Pairing up variables is so common
that a facility called pair declared in the <utility> file is available to assist in their
creation. The pair used here holds 2 iterators, but it can hold 2 items of different
types too.

void f(multimap<string,int>&m)

{

typedef multimap<string, int>::iterator MI;

pair <MI,MI> g = m.equal_range("Gold");

for (MI p=g.first; p!=g.second; ++p) {

// print the value out

}

}

In maps, m["blah"]=1; overwrites, m.insert(val) doesn’t.

4.7 bitset

This provides efficient operators on bits.

#include <iostream.h>

#include <stdio.h>

#include <bitset>

int main()

{

const unsigned int width = 32;

bitset<width> b1("10111");

bitset<width> b2 = 1023;

bitset<width> b3;

cout << "Type in a binary number (type a non-binary digit to end) ";

cin >> b3;

cout << "You typed " << b3 << endl;

cout << "b2 flipped=" << b2.flip() << endl;

cout << "b1=" << b1 << endl;

return 0;

}

27

Advanced Programming with C++ 4 THE STANDARD LIBRARY

4.8 valarray
p.663

valarrays are designed for doing fast vector calculations. They can be initialised
in various ways

// v1 is a vector of 2000 integer elements each initialised to 7

valarray<int> v1(7,2000);

// v2 is initialised to the first 4 elements of d

const double d[]= {1.0, 1.0, 2.0, 3.0, 5.0};

valarray<double> v2(d,4);

// v3 is a copy of v2

valarray<double> v3=v2;

Operations include

v2 = 5; // sets each element to 5

v3 *= .5; // halve each element

v2 = v3.shift(2); // copy the elements of v3 shifted 2 to the left, into v2

// filling spaces with 0.0

v3 = v2.cshift(-2) //copy the elements of v2 shifted 2 to the right, into v3

// filling the spaces with elements that have fallen off

// the other end

v2= v2*cos(v3);

A slice is what you get when you take every nth element of a valarray. This is p.671
especially useful if the valarray represents the values in a 2D array - slices are the
rows or columns. A slice needs to know the index of the first element, the number
of elements and the ’stride’ - the step-size.

slice_array<double>& v_even= v2[slice(0,v2.size()/2,2);

slice_array<double>& v_odd= v2[slice(1,v2.size()/2,2);

v_odd *=2 ; // double each odd element of v2

A gslice lets you extract subarrays from a valarray that represent the values in a p.677
2D array.

A mask array lets you pick out arbitrary elements. It needs to contain bool values p.678
and shouldn’t be bigger than the valarray it’s used with. When used as a subscript,
the valarray elements corresponding to the true elements of the mask array will be
chosen.

bool b[]= { true, false, true, true};

valarray<bool>mask(b,4);

valarray<double>v4= v[mask];

There’s also an indirect array. p.679

valarrays are built for speed - they aren’t intended to grow, and operations aren’t
error-checked - if you multiply together 2 valarrays of different lengths the be-
haviour is undefined.

28

Advanced Programming with C++ 4 THE STANDARD LIBRARY

4.9 Algorithms
p.57

Algorithms (in <algorithm>) operate on containers, including strings. They may
not always be the fastest option but they’re often the easiest. They fall into 6
groups

• Search algorithms - search(), count_if(), etc.

• Sorting algorithms - sort(), merge(), etc.

• Deletion algorithms - remove(), unique(), etc.

• Numeric algorithms - partial_sum(), inner_product(), etc.

• Generation algorithms - generate(), for_each(), etc.

• Relational algorithms - equal(), min(), etc.

Algorithms usually take as their first 2 arguments iterators to mark the range of
elements to be operated on. For example, to replace ’A’ by ’B’ in a string str one
could do

replace(str.begin(), str.end(), ’A’, ’B’);

Here’s one way to count how many instances of a particular character there are in
a string using the find algorithm.

int count (const string& s, char c)

{

string::const_iterator i=find(s.begin(), s.end(),c);

int n=0;

while(i!=s.end()){

++n;

i=find(i+1, s.end(),c);

}

return n;

}

Here’s a way to count the number of ’z’ characters in a C-style string using the
count algorithm. Note how the character array can be used like other containers. p.59

void g(char cs[], int sz)

{

int i1 = count(&cs[0], &cs[sz], ’z’);

}

Here’s the count algorithm again, this time being used to find a particular complex
number in a list.

void f(list<complex>&lc)

{

int i1 = count(lc.begin(), lc.end(), complex(1,3));

}

29

Advanced Programming with C++ 4 THE STANDARD LIBRARY

Other algorithms include next_permutation and prev_permutation

int main()

{

char v[]="abcd";

cout << v << ’\t’;

while (next_permutation(v, v+4))

cout << v << ’\t’;

}

random_shuffle,

char v[]="abcd";

cout << v << ’\t’;

for (int i=5;i;i--) {

random_shuffle(v, v+4);

cout << v << ’\t’;

}

and a routine to cycle elements

rotate (first, middle, last)

rotate “swaps” the segment that contains elements from first through middle-1
with the segment that contains the elements from middle through last.

4.10 Set algorithms

Set algorithms include

• includes()

• set_union()

• set_intersection()

• set_difference()

• set_symmetric_difference()

The following, while demonstrating some of these routines, uses 2 ideas that are
often useful

• an output stream can be thought of as a container, so you can “copy” other
containers onto it. The line

copy(s1.begin(), s1.end(), ostream_iterator<int>(cout," "));

also puts spaces between the integers being printed. For now, don’t worry if
you don’t understand the mechanics - it’s useful so just use it!

30

Advanced Programming with C++ 4 THE STANDARD LIBRARY

• Sometimes you won’t know how many resulting elements will be produced
by an operation, you just want them all added to a container. inserter
(which calls the container’s insert() routine), front inserter (which calls
the container’s push_front() routine - which vectors for example don’t have)
or back inserter (which calls push_back()) do that for you.

#include <algorithm>

#include <set>

#include <iostream.h>

#include <iterator> // needed for ostream_iterator

int main()

{

//Initialize some sets

int a1[10] = {1,2,3,4,5,6,7,8,9,10};

int a2[6] = {2,4,6,8,10,12};

set<int> s1(a1, a1+10), s2(a2, a2+6), answer ;

cout << "s1=";

copy(s1.begin(), s1.end(),

ostream_iterator<int>(cout," "));

cout << "\ns2=";

copy(s2.begin(), s2.end(),

ostream_iterator<int>(cout," "));

//Demonstrate set_difference

set_difference(s1.begin(), s1.end(),

s2.begin(), s2.end(), inserter(answer,answer.begin()));

cout << "\nThe set-difference of s1 and s2 =";

copy(answer.begin(), answer.end(),

ostream_iterator<int>(cout," "));

cout << endl;

return 0;

}

4.11 Using member functions
p.311

Algorithms can use the member functions of objects they’re manipulating.

void print_list(set<Employee*>& s)

{

for_each(s.begin(), s.end(), mem_fun(&Employee::print));

}

4.12 Predicates

Some algorithms can be given a function to modify their behaviour. For example,
the find_if algorithm can find items that conform to a particular condition as
specified by a function. A predicate is a function object (an object that behaves
like a function) that returns a bool showing whether or not an item matches the
condition. p.515

31

Advanced Programming with C++ 5 MORE ON CLASSES

4.12.1 Creating predicates

<functional> supplies common conditions that can operate on various types: e.g.,
greater_equal<int>(), plus<double>(), logical_or<int>() etc. The following
does a vector multiplication of a and b, putting the answer in res to which elements
are added one at a time.

void discount(vector<double>& a, vector<double>& b, vector<double>& res)

{

transform(a.begin(), a.end(), b.begin(), back_inserter(res), multiplies<double>());

// vector multiplication

}

4.12.2 Adapters
p.518

Note: These are sometimes useful but look complicated, so don’t worry if you don’t
understand them..

Adapters are ways to adapt existing predicates - they take and return a function
that we can then use with Standard Library algorithms. There are 4 types -

binder - to use a 2-arg function object as a 1-arg function. less is a binary predi-
cate. If we want make a unary predicate from it we can do bind2nd(less<int>(),7)).

member function adapter - to use a member function p.520

pointer to function adapter - to use a pointer to a member function

negator - to negate an existing predicate

These can be combined -

... find_if (....... not1(bind2nd(ptr_fun(strcmp), "funny")));

5 More on Classes

Concrete Classes are the simple classes that behave just like int, char, etc once p.247
they’re set up.

To make best use of Classes it’s sometimes useful to redefine the operators as well
as define member functions. For instance, if you were going to invent a class to deal
with strings, it would be nice for ’+’ to join strings together. Or if you wanted to
add range-checking to arrays, you’d have to modify the [] behaviour. Below are
some examples of overloading, but first more on the mechanism of inheritance.

5.1 Virtual members

As mentioned earlier, it’s easy to redefine a base class’s function in a derived class,
but to fully exploit polymorphism (the ability to deal with many types transpar-
ently), a new concept needs to be introduced.

32

Advanced Programming with C++ 5 MORE ON CLASSES

Suppose that we were designing a graphics editor. We might have a base class
Shape and various derived classes Triangle, Rectangle, etc, each with their own
print member function. We’d like to collect these objects together into groups
sometimes. An array of pointers to the objects would be appropriate, but what sort
of pointers could we use? Fortunately, it’s possible to assign a derived class pointer
to a base class pointer, so the following is possible, creating an array of pointers to
the base class.

Triangle t1, t2;

Rectangle r1, r2;

typedef ShapePtr Shape*;

vector<ShapePtr> shapes(4);

shapes[0]=&t1;

shapes[1]=&r1;

shapes[2]=&t2;

shapes[3]=&r2;

Then we could draw all the shapes in the group by calling the print function of
each element. But there’s a problem - because the elements are pointers to Shape,
it’s Shape’s print function which is called, rather than the appropriate derived
object’s function.

The solution to this is to define print in the base class as a virtual function by
having something like

virtual void print();

which lets us deal with the shapes array without having to worry about the real
type of each component; the derived object’s print function will always be called.

5.2 Abstract Classes
p.313

Some classes represent abstract concepts for which objects cannot exist. The func-
tions have to be defined in the derived classes. Such functions are called pure virtual
functions and are denoted by the following notation

virtual void print() =0;

in the base class. A class with one or more pure virtual functions is an Abstract
Class.

5.3 Redefining operators

If you need to redefine operators remember to redefine then consistently (if you
redefine ’+’ don’t forget ’+=’) and remember that you can’t change precedence order. p.198
The default assignment operator does a simple copy of members, which might not
be what you want.

33

Advanced Programming with C++ 5 MORE ON CLASSES

Examples of redefining operators are in most books. Some things to remember Deitel, p.474,
Lippman, p.737when redefining assignment operators are

• that reference parameters help to overload operators efficiently (objects aren’t
copied) while keeping their use intuitive (pointers would require the user to
supply addresses of objects).

• to deal with situations where a variable is assigned to itself. A pointer/refer-
ence to the object on the right of the = will be given to the function explicitly.
A pointer to the object that the function is a member of is supplied implicitly
to all non-static member functions. It’s called this, so if this equals the
supplied pointer, you’d usually want to do nothing.

• to return a const. This catches errors like (i+j)=k

• to return *this so that assignments can be chained (i.e. i=j=k becomes
possible)

5.4 A class definition example

The following example highlights some of the more subtle issues associated with
Constructors and Destructors.

It’s the job of Constructors to allocate the resources required when new objects are
created. If these are created using new then the Destructor should free the resources
to stop memory being wasted. For example, if we want to store information about
criminals we might define an object as follows

class criminal {

string name;

char* fingerprint;

int fingerprint_size;

}

where fingerprint points to an image. The memory (if any) allocated for the
image would be freed by the destructor.

assignment operator

That works fine until the following kind of situation arises

void routine (criminal a)

{

criminal b;

b=a;

...

}

The assignment b=a copies the bytes of a to b, so the fingerprint field of both
objects will be the same, pointing to the same memory. At the end of this rou-
tine criminal’s destructor will be called for b, which will delete the memory that

34

Advanced Programming with C++ 5 MORE ON CLASSES

b.fingerprint points to, which unfortunately is the same memory as a.fingerprint
points to.

To cure this we need to redefine the assignment operator so that the new object
has its own copy of the resources.

void criminal::operator=(criminal const &b)

{

name=b.name;

fingerprint_size=b.fingerprint_size;

delete fingerprint;

fingerprint = new char[fingerprint_size];

for (int i=0;i<fingerprint_size;i++)

fingerprint[i]=b.fingerprint[i];

}

Note that space used by an existing fingerprint is freed first before a new fingerprint
image is created - memory would be wasted otherwise.

this

But problems remain. If the programmer writes a=a, the delete command above
frees a.fingerprint, which we don’t want to free. We can get round this by making
use of the this variable, which is automatically set to be the address of the current
object. If the code above is bracketted by if (this != &b) { ... } then it’s
safe.

There’s another improvement that we can make. So that assignments like a=b=c
can work, it’s better not to return void.

criminal const& criminal::operator=(criminal const &b)

{

if (this != &b) {

name=b.name;

fingerprint_size=b.fingerprint_size;

delete fingerprint;

fingerprint = new char[fingerprint_size];

for (int i=0;i<fingerprint_size;i++)

fingerprint[i]=b.fingerprint[i];

}

return *this;

}

copy constructor

But there’s still a problem! Suppose the programmer writes criminal a=b;. a is
being created, so a constructor a called - not an assignment. Thus we need to write
another constructor routine using similar ideas to those used in assignment. Note
that in this case resources don’t need deleting, and that this needn’t be checked
(because criminal a=a; is illegal).

Putting all these ideas together, and sharing code where possible we get

35

Advanced Programming with C++ 5 MORE ON CLASSES

void criminal::copy (criminal const &b)

{

name=b.name;

fingerprint_size=b.fingerprint_size;

fingerprint = new char[fingerprint_size];

for (int i=0;i<fingerprint_size;i++)

fingerprint[i]=b.fingerprint[i];

}

void criminal::destroy()

{

delete fingerprint;

}

// Assignment Operator

criminal const& criminal::operator=(criminal const &b)

{

if (this != &b) {

destroy(this);

copy(b);

}

}

// Default Constructor

criminal()

{

fringerprint=0;

fingerprint_size=0;

}

// Copy Constructor

criminal(criminal const &b)

{

copy(b);

}

// Destructor

void ~criminal()

{

destroy(this);

}

This seems like a lot of work, but it’s necessary if objects use pointers to resources.
You might think that by avoiding the use of commands like a=a in your own code,
you can save yourself the trouble of writing these extra routines, but sometimes the
problem situations aren’t obvious. For instance, the copy constructor is called when
an object is returned or used as an argument to a routine. Better safe than sorry.

5.5 Redefining []
p.286

vector doesn’t have range-checking by default, but if you use the member func-
tion vector::at(), out_of_range exceptions can be trapped, so you can add

36

Advanced Programming with C++ 5 MORE ON CLASSES

out_of_range checking by redefining [] in a class derived from vector, and using
vector’s constructors -

template<class T> class Vec: public vector<T> {

public:

Vec() : vector<T>() {}

Vec(int s) : vector<T>(s) {}

T& operator[] (int i) {return at(i);}

const T& operator[] (int i) const {return at(i);}

}

The following more complicated example creates a mapping (relating a string to a
number) without using the Standard Library’s map facility. It does a word-frequency
count of the text given to it.

#include <iostream.h>

#include <stdio.h>

#include <string>

#include <vector>

// The Assoc class contains a vector of string-int Pairs.

class Assoc {

struct Pair {

string name;

int val;

// The following line is a constructor for Pair

Pair (string n="", int v=0): name(n), val(v) {}

};

// create a vector of the Pairs we’ve just created

vector <Pair> vec;

public:

// redefine []

int& operator[] (const string&);

// a member function to print the vector out

void print_all() const;

};

// This redefines [] so that a ref to the value corresponding to the

// string is returned if it exists. If it doesn’t exist, an entry

// is created and the value returned.

int& Assoc::operator[] (const string& s)

{

// The next line’s creating an appropriate iterator

// for the vector of Pairs

for (vector<Pair>::iterator p=vec.begin(); p!=vec.end(); ++p)

if (s == p->name)

return p->val;

else{

vec.push_back(Pair(s,0));

return vec.back().val;

}

}

37

Advanced Programming with C++ 6 INPUT/OUTPUT

void Assoc::print_all() const

{

for(vector<Pair>::const_iterator p=vec.begin(); p!=vec.end(); ++p)

cout << p->name<<": " << p->val << endl;

}

int main()

{

string buf;

Assoc vec;

while(cin>>buf) vec[buf]++;

vec.print_all();

}

5.6 Redefining ()
p.287
Coplien p.165This can be used to provide the usual function call syntax for objects that in some

way behave like functions (“function objects” or “functors”). These are used by the
Standard Library.

5.7 Redefining ->
p.289

Smart pointers are pointers that do something extra (e.g. increment a counter)
when they are used.

6 Input/Output

As with C, Input/Output is not part of the language, but support is provided by a
library. Most programs need to use #include <iostream>. p.612

You may also need #include <fstream> for file I/O, #include <iomanip> for
greater control over formatting, and #include <strstream> for I/O to and from
strings.

6.1 Simple I/O

The following illustrates the use of putback() for an input stream. istreams also
have an ignore function (is.ignore(5) would ignore the next 5 characters) and
a peek() function which looks at the next character without removing it from the
stream.

istream& eatwhite(istream& is) { char c;

while(is.get(c)) {

if (!isspace(c)) {

is.putback(c);

break;

38

Advanced Programming with C++ 6 INPUT/OUTPUT

}

return is;

}

}

The following illustrates the use of I/O to and from files. Given the name of 2 files
on the command line (which are available to main as C-style character arrays), it
does a file copy.

void error(string p, string p2="") {

cerr<<p << ’ ’ << p2 << endl;

std::exit(1);

}

int main (int argc, char* argv[]) {

if (argc != 3) error("wrong number of arguments");

std::ifstream from(argv[1]);

if (!from) error("cannot open input file", string(argv[1]));

std::ofstream to(argv[2]);

if (!to) error("cannot open output file", string(argv[2]));

char ch;

while (from.get(ch)) to.put(ch);

if (!from || !to) error("something strange happened");

}

You can force the screen/file output to be up-to-date by using

cout.flush() or cout << flush;

but this isn’t usually necessary.

If you want to write or read raw (binary) data (rather than strings that represent
numbers) you can use write, read and casts (section 7.1) to keep the compiler
happy. The following program writes 100 random integers into a file then reads
them back.

#include <iostream.h> #include <stdlib.h> // to use rand #include

<fstream.h>

int main() {

ofstream outfile("myresults",ios::out|ios::binary);

if (outfile.good() == false) {

cerr << "Cannot write to ’myresults’" << endl;

exit(1);

}

int num;

for (int i=0; i<100; i++){

num=rand();

39

Advanced Programming with C++ 6 INPUT/OUTPUT

outfile.write(reinterpret_cast<const char*>(&num), sizeof(num));

}

outfile.close();

ifstream infile("myresults");

if (infile.good() == false) {

cerr << "Cannot open ’myresults’" << endl;

exit(1);

}

int count=0;

while(infile.read(reinterpret_cast<char*>(&num), sizeof(num))) {

cout << num << endl;

count++;

}

cout << count << " numbers read in" << endl;

infile.close();

return 0;

}

6.2 Formatting

The way that text and numbers are output can be controlled. p.626

#include <iostream.h> #include <iomanip.h> #include <cmath> int

main() {

int i=10;

cout << "i = " << i << " (default)\n" ;

cout << hex << "i = " << i << " (hex)\n";

double d = sqrt(7.0);

cout << "d=sqrt(7.0)=" << d << endl;

cout.precision(3);

cout << "After cout.precision(3), d=" << d << endl;

return 0;

}

There many other routines too, amongst them

cout.setf(ios_base::oct,ios_base::basefield); // set base to 8

const ios_base::fmtflags myopt = ios_base::left|ios_base::oct;

ios_base::fmtflags old_options = cout.flags(myopt); //set base to 8

// and alignment to left.

cout.precision(8); // set precision to 8

cout.setf(ios_base::scientific, ios_base::floatfield);

cout.width(4); // output at least four characters cout.fill(’*’);

// fill gaps with ’*’ cin.noskipws(); // don’t skip white space

40

Advanced Programming with C++ 6 INPUT/OUTPUT

6.3 Stream Iterators

Iterators can be used on streams, providing an elegant way to integrate I/O with p.60
container classes. You’ve seen them already in the Standard Library section.

ostream_iterator<string> oo (cout); int main()

*oo = "Hello";

++oo;

*oo = "World";

6.4 Output of User-Defined types

One way to do this is by overloading the stream insertion operator. The following
defines how complex numbers should be printed out -

ostream& operator<<(ostream&s, complex z) // returns ostream& so can

be chained {

return s << ’(’ << z.real() << ’,’ << z.imag() << ’)’;

}

6.5 Input of User-Defined types

The following code reads in a complex number that’s provided in the form (a,b) or
(a) p.621

istream& operator>>(istream&s, complex &a) // returns istream& so

can be chained {

double re=0, im=0;

char c=0;

s>>c;

if (c== ’(’) {

s>>re >> c;

if (c == ’,’) s >> im >> c;

if (c != ’)’) s.clear(ios_base::badbit);

}

else {

s.putback(c);

s>> re;

}

if (s) a = complex(re,im);

return s;

}

6.6 String streams

stringstreams are streams that are attached to a string rather than a file and
letting you use the same syntax as file I/O. They are defined in <sstream>. p.640

41

Advanced Programming with C++ 7 ODDS AND ENDS

#include <iostream.h>

#include <string>

#include <sstream>

int main() {

int i = 7;

string s1 = "He is ";

string s2 = " years old";

ostringstream ostring;

ostring << s1 << i << s2;

cout << "ostring =" << ostring;

return 0;

}

7 Odds and Ends

7.1 Casts

C++ is strict about converting from one type to another - much stricter that C is.
You can use C-style casting but it’s not recommended - instances are hard to find
in the code, and it’s less type-safe. Try to use the least dangerous (most specific)
casting alternative from those below

const cast - used to remove the const qualifier.

dynamic cast - does careful, type-sensitive casting at run time. Can’t deal with
void*.

reinterpret cast - produces something that has the same bit pattern as the orig-
inal.

static cast - doesn’t examine the object it casts from at run time. This is fast
if it’s safe - and the compiler should tell you if it isn’t safe. Can deal with
void*. static_cast can be used to reverse any of the implicit conversions
(like int to float).

To convert from a const void * to a File_entry** (a common kind of thing to
do in C) I had to do

File_entry**fe2=

reinterpret_cast<File_entry**>(const_cast<void*>(entry2));

42

Advanced Programming with C++ 7 ODDS AND ENDS

7.2 Limits

Use <climits> to access information on the system’s limits. E.g. to check if a long
variable can fit into a short you could try

long i; if (i<numeric_limits<short>::min() ||

numeric_limits<short>::max() <i)

cout << i << "cannot fit into a short"

7.3 Performance

The quality of the compiler and libraries can greatly affect the speed of the resulting
code, but there’s a lot you can do to help.

• Read about the available optimiser options. On HP’s for example, using ’+O4’
instead of no optimisation can speed up some code by orders of magnitude.

• Try not to use call-by-value for big objects. Unless you need to change the
object, use a reference to a const value

• Some C++ features have compile time implications, others have run time,
program size or debugging implications. For example, making a function
virtual can add 15% to the cost of a function call whereas templates have
no runtime implications. They do, however, make things more difficult for
debuggers and compilers. The Standard Template Library, for example, avoids
virtual functions for performance reasons.

• Inlined routines are faster, but they’ll bloat the code. Note that a member
function defined in the class declaration is automatically inline. In particular,
note that an inline destructor can be inserted at each exit point of a function.

• Though Standard Library algorithms like reverse work on both list and
vector containers, the choice of container is still important for performance.

• Though vectors can grow, it’s more efficient to create them with their maxi-
mum size.

• Try to create and initialise a variable in one operation.

7.4 Maths

If you’re using any of the maths routines (sqrt, sin, etc) remember that you’ll need
to include cmath to declare the routines.

Before you start writing much maths-related code, check to see that it hasn’t all been
done before. Many maths routines, including routines that offer arbitrary precision
are available from netlib, http://www.hensa.ac.uk/netlib/master/readme.html.

Before you do any heavy computation, especially with real numbers, I suggest that
you browse through a Numerical Analysis book. Things to avoid are

43

http://www.hensa.ac.uk/netlib/master/readme.html

Advanced Programming with C++ 7 ODDS AND ENDS

• Finding the difference between very similar numbers (if you’re summating an
alternate sign series, add all the positive terms together and all the negative
terms together, then combine the two).

• Dividing by a very small number (try to change the order of operations so
that this doesn’t happen).

• Multiplying by a very big number (use logs).

Common problems that you might face are :-

Testing for equality :- Real numbers are handled in ways that don’t guarantee
expressions to yield exact results. Just as in base 10 to 2 decimal places,
3 ∗ (10/3) doesn’t equal 10, so computer arithmetic has its limitations. It’s
especially risky to test for exact equality. Better is to use something like

d = max(1.0, fabs(a), fabs(b))

and then test fabs(a - b) / d against a relative error margin. Useful con-
stants in <climits> are FLT_EPSILON, DBL_EPSILON, and LDBL_EPSILON, de-
fined to be the smallest numbers such that

1.0f + FLT_EPSILON != 1.0f
1.0 + DBL_EPSILON != 1.0
1.0L + LDBL_EPSILON != 1.0L

respectively.

Avoiding over- and underflow :- You can test the operands before performing
an operation in order to check whether the operation would work. You should
always avoid dividing by zero. For other checks, split up the numbers into
fractional and exponent part using the frexp() and ldexp() library functions
and compare the resulting values against HUGE (all in <cmath>).

Floats and Doubles :- You can use the information in <limits> or use sizeof(double),
etc to compare the size of float, double and long double.

• Keep in mind that the double representation does not necessarily in-
crease the precision over float. Actually, in most implementations the
worst-case precision decreases but the range increases.

• Do not use double or long double unnecessarily since there may a large
performance penalty. Furthermore, there is no point in using higher pre-
cision if the additional bits which will be computed are garbage anyway.
The precision one needs depends mostly on the precision of the input
data and the numerical method used.
#include <iostream.h> #include <stdio.h>

int main(int argc, char* argv[]) { float f1; double d1; long double

ld1;

f1=d1=ld1=123.45678987654321; cout.precision(50); cout << "f1=" <<

f1 << ", f1**2=" << f1*f1 << endl; cout << "d1=" << d1 << ", d1**2="

<< d1*d1 << endl;

//The following doesn’t work on HPs!

44

Advanced Programming with C++ 7 ODDS AND ENDS

//cout << "ld1=" << ld1 << "ld1**2=" << ld1*ld1 << endl;

printf("ld1=%25.25Lf, ld1*ld1=%25.25Lf\n", ld1, ld1*ld1);

return 0; }

Infinity :- The IEEE standard for floating-point maths recommends a set of func-
tions to be made available. Among these are functions to classify a value as
NaN, Infinity, Zero, Denormalized, Normalized, and so on. Most imple-
mentations provide this functionality, although there are no standard names
for the functions. Such implementations often provide predefined identifiers
(such as _NaN, _Infinity, etc) to allow you to generate these values.

If x is a floating point variable, then (x != x) will be TRUE if and only
if x has the value NaN. Some C++ implementations claim to be IEEE 748
conformant, but if you try the (x!=x) test above with x being a NaN, you’ll
find that they aren’t.
The following sythesises a NaN on HP machines, then uses isnan().

#include <iostream.h> #include <cmath>

double make_a_NaN () { double ret; char* pointer =

reinterpret_cast<char*>(&ret); int i;

// IEEE spec for doubles on HPs

// 0 : sign bit

// 1-11: exponent

// 12-63: fraction

// For QNaNs on HPs

// set 1-11 to 1, 12=0, rest to 1

for (i=0; i<8; i++)

*(pointer+i) = 255;

*(pointer+1)= 247;

return ret; }

int main(int argc, char* argv[]) { double d;

d=make_a_NaN (); if (isnan(d))

cout << d << " is a nan" << endl;

else

cout << d << " is not a nan" << endl;

return 0;

}

An increasing amount of maths work is being done with C++. One development is
the Template Numerical Toolkit built around the Standard Library.

http://math.nist.gov/tnt/index.html

45

http://math.nist.gov/tnt/index.html

Advanced Programming with C++ 7 ODDS AND ENDS

7.5 Hardware Interfacing: bit operations and explicit ad-
dresses

If you’re interfacing with hardware and need to operate on bits you can use bitset
but you may prefer to use C++’s low-level operations.

Setting a bit :- Suppose you wanted to set bit 6 of i (a long, say) to 1. First
you need to create a mask that has a 1 in the 6th bit and 0 elsewhere by doing
‘1L<<6’ which shifts all the bits of the long 1 left 6 bits. Then you need to
do a bit-wise OR using ‘i = i | (1L<<6)’.

Unsetting a bit :- Suppose you wanted to set bit 6 of i (a long, say) to 0. First
you need to create a mask that has a 0 in the 6th bit and 1 elsewhere by doing
‘1L<<6’ then inverting the bits using the ~ operator. Then you need to do a
bit-wise AND using the & operator.

The whole operation is ‘i =i & ~(1<<6)’ which can be contracted to ‘i &= ~(1<<6)’.

Creating a mask :- In X graphics, masks are often created each of whose bits
represent a option that is to be selected in some way. Each bit can be referred
to using an alias that has been set up in an include file. For example, a mask
which could be used in a call to make a window sensitive to key presses and
buttonpresses could be set up by doing

unsigned int mask = KeyPressMask | ButtonPressMask ;

Suppose because of hardware considerations the i variable needed to be the value
of memory location 2000. The following code will do what you want.

long *memory_pointer = reinterpret_cast<long*>(2000); long i =

*memory_pointer;

7.6 Using routines from other languages

7.6.1 C

When your C++ code is presented with the prototypes of C routines, the prototypes
need to be bracketed by the following

#ifdef __cplusplus extern "C" { #endif ... #ifdef __cplusplus }

#endif

so that the code compiles.

7.6.2 Fortran

This is a rather machine-specific issue. Rudi Vankemmel (ankemme@imec.be) men-
tions some general points that are worth noting :-

46

Advanced Programming with C++ 7 ODDS AND ENDS

1. Fortran uses a column wise storage of matrices while C++ stores them row
wise. This means that when you want to parse a matrix from your C++
program to the fortran routine you must transpose the matrix in your program
before entering the routine. Of course, any output from such a routine must
be transposed again.

If you omit this step, then probably your program will run (because it has
data to compute on) but it will generate wrong answers.

If you have the Fortran source code (of any routine) then on some platforms
you may use compiler directives specifying that the Fortran compiler must use
row wise storage. Some platforms support these directives. However watch out
with this if you call the same routine from another Fortran routine/program.

2. Your Fortran compiler may add an underscore to the routine name in the
symbol table. Hence in the calling C++ program you must add a trailing
underscore! Otherwise the loader will complain about an undefined symbol.

3. Fortran passes its variables by reference. This means that you MUST give
adresses in your calling C++ program.

4. Watch out especially with floats and doubles. Make sure that the size of the
variable in the calling program is identical to the size in the Fortran routine.

7.7 bad habits to give up

C++ is a flexible language. You can write C++ that a C compiler could compile.
You can even write in a style that isn’t too distant from Fortran 77. But if you’re a
C programmer who wants to make the most of modern C++, the following points
are worth bearing in mind

• Think in terms of objects rather than functions. Groups of objects are easier
to organise (using inheritance) than are groups of functions.

• Use namespaces: functions can have shorter names; information hiding is eas-
ier; and it’s easier to switch between different implementations. Use names-
pace rather than files to control scoping.

• Use references rather than pointers when you can.

• Use strings. You can convert between C and C++ strings

char cstring[]="a test";

string a_str;

a_str=string(cstring);

strcpy(cstring, a_str.c_str());

• Don’t use NULL - use 0

• Create variables just before first use. In particular, create for loop index
variables within the loop construction.

• Use exceptions when the code that has to deal with a problem is far from the
code that discovers the problem.

• Use const as much as possible. Note that in C++, const variables have
internal linkage by default whereas in C, they have external linkage.

47

Advanced Programming with C++ 7 ODDS AND ENDS

• Use enum

• Don’t use type-identifer fields in structures

• Avoid pre-processor macros. const, inline, template and namespace replace p.161
most of #define usage, leading to stronger typing and better control of scope.
For example

const int answer = 42; template<class T> inline T min(T a, T b)

{return (a<b)?a:b;}

• Avoid static except within functions.

// better than a global

int & use_count() { static int uc =0; return uc; }

or use nameless namespaces

namespace { class X{}; void f(); // like a static int i; }

7.8 Non-essentials (Things you probably don’t need to know
yet)

7.8.1 virtual inheritance

Inheritance can be private (where even the public fields of the base class are
treated as private), public (where the base class determines visibility), or virtual.
With virtual inheritance there is only one copy of each object even if (because
of multiple inheritance) the object appears more than once in the hierarchy. In
the following example, derived1a and derived1b each contain a base object, but
derived2 contains just one i field.

#include <iostream.h>

class base{ public:

int i;

};

class derived1a: virtual public base { public:

int j;

};

class derivedb: virtual public base { public:

int k;

};

class derived2: public derived1a, public derived1b{ public:

int product() {return i*j*k;}

};

main() { derived2 obj; obj.i = 10; obj.j = 3; obj.k = 5;

cout << "product is" << obj.product() << ’\n’; return 0; }

48

Advanced Programming with C++ 7 ODDS AND ENDS

7.8.2 typeid
p.414

In C++ you can identify the type of an object dynamically using RTTI (run-time
type information). Given a type name, typeid returns a reference to a type_info
object (in <type-info>). Can also give it an expression

#include <typeinfo> void g(Component* p) { cout <<

typeid(*p).name();

}

7.8.3 virtual destructors
p.422

You can’t have virtual constructors, but you can have virtual destructors. They’re Coplien p.140
not quite ordinary functions - no pointer to them is possible, for example).

7.8.4 Auto pointers
p.367, Deitel
p.688, Lippman
p.409auto_ptr in <memory> - object pointed to will be deleted when pointer goes out of

scope

7.8.5 operator functions

An operator function can be a member or non-member. The assignment, subscript,
call and member selection operators are required to be class member functions.

7.8.6 union

A union is like a struct except that the fields occupy the same memory location
with enough memory allocated to hold the largest item. The programmer has to
keep a note of what the union is being used for. What would the following code
print out?

... union person {

int age;

int height;

char surname[20];

} fred;

fred.age = 23;

fred.height = 163;

cout << "Fred is " << fred.age << "years old\n"; ...

If fred started at memory location 2000, then fred.age, fred.height and fred.surname
would all begin at memory location 2000 too, whereas in a struct the fields wouldn’t
overlap. So setting fred.height to 163 overwrites fred.age (and the 1st 4 char-
acters of fred.surname) making fred 163 years old.

49

Advanced Programming with C++ 8 PROGRAM DEVELOPMENT

7.8.7 Non-type template parameters

Values as well as types can be used as template parameters.

template < class T, int size> class MyArray { ...

This lets the template create arrays of a fixed size (good for performance reason)
but it means that a new piece of code will be created for each different class/size
combination used.

8 Program Development

Stroustrup writes that the last section of his book aims p.691

to bridge the gap between would-be language-independent design and pro-
gramming that is myopically focussed on details. Both ends of this spec-
trum have their place in a large project, but to avoid disaster and exces-
sive cost, they must be part of a continuum of concerns and techniques.

Programs vary considerably in their composition. I’ve seen these figures quoted

• Coding takes 10% of the total time. Debugging takes 50%.

• The Graphical User Interface is 80% of the code

• Error handling can be 50% of the code

Complexity is the enemy, so

• Divide and conquer.

• Use modules - namespaces or files (helps the optimiser too).

Don’t re-invent the wheel

• Copy models

• Adapt existing parts

• When making new parts design them for re-use

8.1 Style

It helps if you decide upon a uniform style for writing code. It’s common to suggest
that for all except the most trivial classes it’s wise to define Coplien p.38-45

• a void constructor -

50

Advanced Programming with C++ 8 PROGRAM DEVELOPMENT

• a copy constructor - to create a new object using values from an existing one.
Use call-by-reference to avoid infinite recursion. Deitel p.483

• the assignment operator - that returns a reference.

And then there’s the ”the rule of three” - if you write any one of a copy constructor,
copy assignment operator or destructor, then you will almost certainly need to write
all three for your class to function properly.

Stanley Lippman in Dr.Dobb’s Journal, October 99, (p.40) noted that unnecessary
definition of these functions is likely in practise to make the code bigger and/or
slower - he got a 40% speed improvement by removing all 3 from a piece of code,
the compiler’s default alternatives being more efficient.

When deriving classes Coplien p.192

• if using public inheritance, most base class member functions should be de-
clared virtual to ensure that the derived class customisations will override
the base class behaviour even in a context where a base class object is ex-
pected.

• use virtual inheritance if you are not especially concerned about performance
or if you might use multiple inheritance later.

8.2 Makefiles

If you have many source files you don’t need to recompile them all if you only change
one of them. By writing a makefile that describes how the executable is produced
from the source files, the make command will do all the work for you. In the 1A/1B
courses makefiles were created by the xcc1 program, but you may well need to write
your own eventually.

The following makefile says that pgm depends on two files a.o and b.o, and that
they in turn depend on their corresponding source files (a.cc and b.cc) and a
common file incl.h:

pgm: a.o b.o

aCC a.o b.o -o pgm

a.o: incl.h a.cc

aCC -Aa -c a.cc

b.o: incl.h b.cc

aCC -Aa -c b.cc

Lines with a ‘:’ are of the form

target : dependencies

make updates a target only if it’s older than a file it depends on. The way that
the target should be updated is described on the line following the dependency line
(Note: this line needs to begin with a TAB character).

1http://www-h.eng.cam.ac.uk/help/tpl/languages/xccmake.html

51

http://www-h.eng.cam.ac.uk/help/tpl/languages/xccmake.html

Advanced Programming with C++ 8 PROGRAM DEVELOPMENT

Here’s a more complex example of a makefile for a program called dtree. First
some variables are created and assigned. In this case typing ‘make’ will attempt to
recompile the dtree program (because the default target is the first target men-
tioned). If any of the object files it depends on are older than their corresponding
source file, then these object files are recreated.

The targets needn’t be programs. In this example, typing ‘make clean’ will remove
any files created during the compilation process.

Makefile for dtree DEFS = -O2 -DSYSV

CFLAGS = $(DEFS) -O

LDFLAGS = CC = aCC

LIBS = -lmalloc -lXm -lXt -lX11 -lm

BINDIR = /usr/local/bin/X11 MANDIR = /usr/local/man/man1

OBJECTS_A = dtree.o Arc.o Graph.o #using XmGraph

ARCH_FILES = dtree.1 dtree.cc Makefile Dtree Tree.h TreeP.h \

dtree-i.h Tree.cc Arc.cc Arc.h ArcP.h Graph.cc Graph.h GraphP.h

dtree: $(OBJECTS_A)

$(CC) -o dtree $(LDFLAGS) $(OBJECTS_A) $(LIBS)

Arc.o: Arc.cc

$(CC) -c $(CFLAGS) Arc.cc

Graph.o: Graph.cc

$(CC) -c $(CFLAGS) Graph.cc

dtree.o: dtree.cc

$(CC) -o dtree.o -c $(CFLAGS) -DTREE dtree.cc

install: dtree dtree.1

cp dtree $(BINDIR)

cp dtree.1 $(MANDIR)

clean:

rm -f dtree *.o core tags a.out

8.3 Debugging

Code Complete by Steve McConnell (Microsoft Press, 1993) is the book to read. It
has very useful sections on testing and debugging, and quotes results from investi-
gations of software quality assurance. On p.567 it notes that the industry average
for code production is 8-20 lines of correct code per day. On p.610 it notes that
industry average experience suggests that there are 15-50 errors per 1000 lines of
delivered code. The recommendation is to design and code defensively - it saves
time in the end.

C++ is a strongly-typed language with many features to help write safe code, but
you still need to be cautious

• Let the compiler help you as much as possible! Many compilers generate

52

Advanced Programming with C++ 8 PROGRAM DEVELOPMENT

warning messages if you ask them to.

• Assume when you’re writing your program that it won’t be bug-free. Write it
so that you (and others) can easily debug it: make routines small and control
flow simple.

• Concrete examples are easier to debug. You can make them into a template
once they’re working.

• Write a test suite (for you and future users)

• Don’t get stuck at one level - zoom in and pan out. Your code should be un-
derstandable locally (parts should be as isolated from other parts as possible)
and at the top level.

• Write “defensive” code. Always assume the worst.

• It’s not uncommon for beginners to prove to themselves on paper that their
broken code is correct and the compiler is wrong. Add cout statements to
print out intermediate values and test assertions.

• If you’re using floating point arithmetic, check divisions to see if you’re divid-
ing by zero.

• Check that you’re not going off the end of arrays.

• To comment-out large chunks of code bracket it with

#if 0 ... #endif

See the Debugging handout2 for details of the wdb debugger3.

8.4 Common Difficulties and Mistakes

Obscure Error Messages - small errors in a simple-looking line can produce
complicated messages like the following

Error 226: "set1.cc", line 16 # No appropriate function found for

call of

’operator <<’. Last viable candidate was "ostream &ostream::operator

<<(char)" ["/opt/aCC/include/iostream/iostream.h", line 509]. Argument of

type ’class set<int,less<int>,allocator>’ could not be converted to

’char’.

cout << "s1 = " << s1;

^^^^^^^^^^^^^^^^^^^^^

The ^^^^ symbols show which part of the line is at fault. In this case the
compiler can’t narrow down the problem, so next read the first (easiest) part
of the error message. There’s something wrong with the use of <<. Remember
that in C++ many functions can be invoked by an operator - it all depends
on the number and type of operands. In this case s1 (a set) isn’t something
that there’s a matching function for - hence the error message. The compiler,
trying to be helpful, gives the next best option - a function tied to << that
can deal with a char.

2http://www-h.eng.cam.ac.uk/help/tpl/languages/debug/debug.html
3http://www-h.eng.cam.ac.uk/help/tpl/languages/debug/node5.html

53

http://www-h.eng.cam.ac.uk/help/tpl/languages/debug/debug.html
http://www-h.eng.cam.ac.uk/help/tpl/languages/debug/node5.html

Advanced Programming with C++9 CIMG, AN IMAGE PROCESSING LIBRARY FOR C++

Another example: the line double d = sqrt(4); produces the following error
because the integer given to sqrt has to be promoted to a real, but the
compiler doesn’t know what kind of real.

Error 225: "foo.cc", line 6 # Ambiguous overloaded function call;

more than

one acceptable function found. Two such functions that matched were "long

double sqrt(long double)" ["/opt/aCC/include/cmath", line 107] and "float

sqrt(float)" ["/opt/aCC/include/cmath", line 57].

Obscure declarations and definitions - C++ has fewer keywords than many
languages but it makes up for this by having many meaning attached to a
symbol. For example ’<’ is used in #include lines, cout, in template defi-
nitions as well as meaning ’less-than’. This makes deciphering declarations
hard. c++decl can sometimes help.

Deriving from Container Classes - the container classes weren’t designed to
act as base classes: they don’t have virtual functions. Use them as members
of other classes instead.

Object creation - The first 2 lines below create a string variable s. The 3rd
doesn’t create an empty string - it declares a function s that returns a string.

String s; String s("initial"); String s();

Input and newline characters - If you try to get a character then a string from
the user with

cout << "Type a character: "; cin >> ch; cout << "Type a string: ";

cin.getline(str,20);

you’re likely to get an empty string because the >> operator leaves the typed
newline in the input stream. One way round this is to use istream::ignore(INT_MAX, ’\n’);.

9 CImg, an image processing library for C++

The CImg library is an image processing library, designed for C++ programmers.
It provides useful classes and functions to load/save, display and process various
types of images.

9.1 library structure

The CImg Library consists in a single header file CImg.h providing a set of C++
template classes that can be used in your own sources, to load/save, process and
display images or list of images.

Very portable (Unix/X11, Windows, MacOS X, FreeBSD,..), efficient, simple to
use, its a pleasant toolkit for coding image processing applications in C++.

The header file CImg.h contains all the classes and functions that compose the
library itself. This particularly means that :

54

Advanced Programming with C++9 CIMG, AN IMAGE PROCESSING LIBRARY FOR C++

• No pre-compilation of the library is needed, since the linking of the CImg
functions is done at the same time as the linking of your own C++ code.

• No complex dependencies have to be handled : Just include the CImg.h file,
and you get a working C++ image processing toolkit.

• The compilation is done on the fly : only CImg functionalities actually used
by your program are compiled and appear in the executable. This leads to
very compact code, without any unused code.

• Class members and functions are inlined, leading to better performance
during the program execution.

The CImg Library is structured as follows:

• All library classes and functions are defined in the namespace cimg library.
This namespace encapsulates the library functionalities and avoid any class
name collision that could happen with other includes. Generally, one uses this
namespace as a default namespace :

#include "CImg.h"
using namespace cimg_library;
...

• The namespace cimg library::cimg defines a set of low-level functions and
variables used by the library. Documented functions in this namespace can
be safely used in your own program. But, don’t use the cimg library::cimg
namespace as a default namespace, since it contains functions whose names
are already defined in the standard C/C++ library.

• The class cimg library::CImg<T> represents images up to 4-dimensions wide,
containing pixels of type T (template parameter). This is actually the main
class of the library.

• The class cimg library::CImgList<T> represents lists of cimg library::CImg<T>
images. It can be used for instance to store different frames of an image se-
quence.

• The class cimg library::CImgDisplay is able to display images or image
lists into graphical display windows. As you may guess, the code of this class
is highly system-dependent but this is transparent for the programmer, as
environment variables are automatically set by the CImg library

• The class cimg library::CImgException (and its subclasses) are used by
the library to throw exceptions when errors occur. Those exceptions can
be catched with a try { ..} catch (CImgException) { .. } construct.
Subclasses define precisely the type of encountered errors.

9.2 CImg, Hello world

.

Below is a very simple code that creates a Hello World image.

55

Advanced Programming with C++9 CIMG, AN IMAGE PROCESSING LIBRARY FOR C++

#include "CImg.h"
using namespace cimg_library;
int main() {

CImg<unsigned char> img(640,400,1,3);
// Define a 640x400 color image with 8 bits per color component.

img.fill(0);
// Set pixel values to 0 (color : black)

unsigned char purple[] = { 255,0,255 };
// Define a purple color

img.draw_text(100,100,"Hello World",purple);
// Draw a purple "Hello world" at coordinates (100,100).

img.display("My first CImg code");
// Display the image in a display window.

return 0;
}

9.3 compiling a CImg application

The CImg library is a very light and user-friendly library. Only standard system
libraries are used. It avoids complex dependencies and problems with library com-
patibility. The only thing you need is a (quite modern) C++ compiler:

• g++ (Linux version): Use the following command to compile and link a CImg
application with g++, on Linux:

g++ -o hello_word.exe hello_world.cpp -O2 -L/usr/X11R6/lib -lm
-lpthread -lX11

• g++ (MingW windows version): Use the following command to compile and
link a CImg application with g++, on Windows:

g++ -o hello_word.exe hello_word.cpp -O2 -lgdi32

56

Advanced Programming with C++ 10 GLOSSARY

10 Glossary

• Abstract Class - a class with at least one pure virtual function.

• Abstract Data Type (ADT) - An abstract class.

• Adapters - ways to adapt existing predicates.

• Algorithm - general-purpose routines for use with container classes.

• Bag - a multiset.

• Cast - explicit conversion of an object type.

• Container - A class that can hold other objects.

• Iterator - Something that can point to an object in a container.

• Multiple Inheritance - When a class has more than one base class.

• Namespace - a scoping mechanism that can scan files.

• Overloading - When calling a function runs different code . according to the
types and number of arguments provided.

• Polymorphism - not having to worry about the type of object you’re dealing
with.

• Predicate - a function object that returns a bool.

• Pure Virtual function - a function that must be over-ridden in a derived class.

• The Standard Library - classes, algorithms, and function objects providing
support for strings, vectors, lists, maps, strings and random numbers.

• Template - A class that can be “filled in” with various types.

• Virtual function - a function that can be over-ridden in a derived class.

• Volatile - a variable is volatile if it might change beyond control of the program.

57

Advanced Programming with C++ 11 REFERENCES

11 References

• Stroustrup B., The C++ Programming Language (third edition), AT&T,
1997. Also known as ’the bible’. See his homepage:
http://www.research.att.com/ bs/homepage.html

• Deitel and Deitel,C++: How to Program, (second edition), Prentice Hall,
1998. Used by undergraduates at Cambridge.

• Coplien J.O., Advanced C++ Programming Styles and Idioms, Addison-
Wesley, 1992.

• Lippman S.B. and Lajoie J.,C++ Primer (3rd Edition), Addison-Wesley,
1997. Despite the title, this contains some advanced material not covered by
Stroustrup or Deitel.

• Lippman S.B.,Inside the C++ Object Model, Addison-Wesley, 1996.

• Coplien J.O.,Multiparadigm Design for C++, Addison-Wesley, 1998.

• Cambridge University’s C++ help page:
http://www-h.eng.cam.ac.uk/help/tpl/languages/C++.html

• Brokken F.B.C++ Annotations, (version 6.5.0), available for download from
the module’s webpage but comprises 675 pages so print at your own risk.

• Ezust A. and Ezust P.Design Patterns in C++ with Qt4, Prentice Hall,
available for download but also huge, Makes use of the Qt programming en-
vironment which will not be used in this course.

58

http://www.research.att.com/~bs/homepage.html
http://www-h.eng.cam.ac.uk/help/tpl/languages/C++.html

Advanced Programming with C++ 12 PROGRAM LISTINGS

12 Program listings

Listing 1: intTree.cpp, A binary search tree for integers.
// a t r e e f o r s t o r i n g i n t e g e r s

#include <iostream>
#include <c s t d l i b >

// c l a s s i n t t r e e ;

class bnode {
private :

friend class i n t t r e e ;
bnode∗ l e f t ;
bnode∗ r i g h t ;
int data ;
int count ;
bnode (int d , bnode∗ l , bnode∗ r) :

data (d) , l e f t (l) , r i g h t (r) , count (1) { }
void pr in t () const

{ std : : cout << data << ” : ” << count << ’ \ t ’ ; }
} ;

class i n t t r e e {
public :

i n t t r e e () { root = 0 ; }
void i n s e r t (int d) ;
int f i nd (int d) const { return (f i nd (root , d)) ; }
void pr in t () const { pr in t (root) ; }

private :
bnode∗ root ;
int f i nd (bnode∗ r , int d) const ;
void pr in t (bnode∗ r) const ;

} ;

void i n t t r e e : : i n s e r t (int d)
{

bnode∗ temp = root ;
bnode∗ o ld ;

i f (root == 0) {
root = new bnode (d , 0 , 0) ;
return ;

}
while (temp != 0) {

o ld = temp ;
i f (temp −> data == d) {

(temp −> count)++;
return ;

}
i f (temp −> data > d)

temp = temp −> l e f t ;
else

59

Advanced Programming with C++ 12 PROGRAM LISTINGS

temp = temp −> r i g h t ;
}
i f (o ld −> data > d)

o ld −> l e f t = new bnode (d , 0 , 0) ;
else

o ld −> r i g h t = new bnode (d , 0 , 0) ;
}

int i n t t r e e : : f i nd (bnode∗ r , int d) const
{

i f (r == 0)
return 0 ;

else i f (r −> data == d)
return (r −> data) ;

else i f (r −> data > d)
return (f i nd (r −> l e f t , d)) ;

else
return (f i nd (r −> r i ght , d)) ;

}

void i n t t r e e : : p r i n t (bnode ∗ r) const
{

i f (r != 0) {
pr in t (r −> l e f t) ;
r −> bnode : : p r i n t () ;
p r i n t (r −> r i g h t) ;

}
}

int main ()
{

i n t t r e e t ;
int p ;

while (std : : c in>>p){
i f (p==0)break ;

t . i n s e r t (p) ;
}
t . p r i n t () ;
s td : : cout << ”\n” ;

std : : cout<<” ente r another ze ro to cont inue \n” ;
std : : c in>>p ;
i n t t r e e i t r e e ;

for (int i = 150 ; i > 0 ; −− i)
i t r e e . i n s e r t (int (rand ())) ;

i t r e e . p r i n t () ;

s td : : cout<<” ente r another ze ro to terminate \n” ;
std : : c in>>p ;
return 0 ;

}

60

Advanced Programming with C++ 12 PROGRAM LISTINGS

Listing 2: genTree.cpp, A template binary search tree.
//Template Version o f genTree .

#include <iostream>
#include <s t r i ng >

template <class T> class genTree ; // forward de c l
template <class T> class bnode {
private :

friend class genTree<T>;
bnode<T>∗ l e f t ;
bnode<T>∗ r i g h t ;
T data ;
int count ;
bnode (T d , bnode<T>∗ l , bnode<T>∗ r) :

data (d) , l e f t (l) , r i g h t (r) , count (1) { }
void pr in t () const

{ std : : cout << data << ” : ” << count << ’ \ t ’ ; }
} ;

template <class T>
class genTree {
public :

genTree () { root = 0 ; }
void i n s e r t (T d) ;
T f i nd (T d) const { return (f i nd (root , d)) ; }
void pr in t () const { pr in t (root) ; }

private :
bnode<T>∗ root ;
T f i nd (bnode<T>∗ r , T d) const ;
void pr in t (bnode<T>∗ r) const ;

} ;

template <class T>
void genTree<T> : : i n s e r t (T d)
{

bnode<T>∗ temp = root ;
bnode<T>∗ o ld ;

i f (root == 0) {
root = new bnode<T>(d , 0 , 0) ;
return ;

}
while (temp != 0) {

o ld = temp ;
i f (comp(temp −> data , d) == 0) {

(temp −> count)++;
return ;

}
i f (comp(temp −> data , d) > 0)

temp = temp −> l e f t ;
else

temp = temp −> r i g h t ;

61

Advanced Programming with C++ 12 PROGRAM LISTINGS

}
i f (comp(o ld −> data , d) > 0)

o ld −> l e f t = new bnode<T>(d , 0 , 0) ;
else

o ld −> r i g h t = new bnode<T>(d , 0 , 0) ;
}

template <class T>
T genTree<T> : : f i nd (bnode<T>∗ r , T d) const
{

i f (r == 0)
return 0 ;

else i f (comp(r −> data , d) == 0)
return (r −> data) ;

else i f (comp(r −> data , d) > 0)
return (f i nd (r −> l e f t , d)) ;

else
return (f i nd (r −> r i ght , d)) ;

}

template <class T>
void genTree<T> : : p r i n t (bnode<T> ∗ r) const
{

i f (r != 0) {
pr in t (r −> l e f t) ;
r −> bnode<T> : : p r i n t () ;
p r i n t (r −> r i g h t) ;

}
}

template <class T> // genera l case
int comp(T i , T j)
{

i f (i == j) //assumes == < de f ined f o r T
return 0 ;

else
return ((i < j) ? −1 : 1) ;

}

int main ()
{

genTree<char> t ;
char p ;

std : : cout<<” ente r any chars to generate a charTree (terminte with z char) \n” ;

while (std : : c in>>p){
i f (p==’ z ’)break ;

t . i n s e r t (p) ;
}
t . p r i n t () ;
s td : : cout << ”EOF” << ”\n” ;

62

Advanced Programming with C++ 12 PROGRAM LISTINGS

std : : cout<<” ente r any char to generate an intTree \n” ;
std : : c in>>p ;

genTree<int> iTree ;

for (int i = 15 ; i > −5; −− i)
iTree . i n s e r t (i) , iTree . i n s e r t (i) ;

iTree . p r i n t () ;

s td : : cout<<” ente r any char to terminate \n” ;
std : : c in>>p ;
return 0 ;

}

63

	Introduction
	A second programming language
	Web pages and Text books
	The UKZN Teaching labs
	Microsoft Windows
	Linux

	Major project for 2010

	C++ programming constructs
	Keywords
	Built-in Types and Enumerations
	Operators
	Selection
	if
	switch

	Loops
	while, do
	for

	Aggregation
	arrays
	structures and classes

	Pointers
	Functions
	Declarations
	Memory Allocation
	Scope and Namespaces
	Exceptions

	Object-orientated programming
	Classes
	Class member privacy
	Friend classes and functions
	A complete example
	Derived classes
	Static members
	Const members
	Static Const members
	Overriding behaviour
	Templates

	The Standard Library
	Iterators
	Strings
	Iterators
	Size
	Routines

	vector
	Queues
	list
	map
	bitset
	valarray
	Algorithms
	Set algorithms
	Using member functions
	Predicates
	Creating predicates
	Adapters

	More on Classes
	Virtual members
	Abstract Classes
	Redefining operators
	A class definition example
	Redefining []
	Redefining ()
	Redefining ->

	Input/Output
	Simple I/O
	Formatting
	Stream Iterators
	Output of User-Defined types
	Input of User-Defined types
	String streams

	Odds and Ends
	Casts
	Limits
	Performance
	Maths
	Hardware Interfacing: bit operations and explicit addresses
	Using routines from other languages
	C
	Fortran

	bad habits to give up
	Non-essentials (Things you probably don't need to know yet)
	virtual inheritance
	typeid
	virtual destructors
	Auto pointers
	operator functions
	union
	Non-type template parameters

	Program Development
	Style
	Makefiles
	Debugging
	Common Difficulties and Mistakes

	CImg, an image processing library for C++
	library structure
	 CImg, Hello world
	compiling a CImg application

	Glossary
	References
	Program listings

