
CS107 Handout 03
Spring 2008 April 4, 2008

C++’s Standard Template Library (STL)

My intent here is to provide a gentle introduction to some of the container classes
defined by the STL. My personal experience is that the pair, the vector and the map
are used more often than the other STL classes, so I’ll frame my discussion around them.
After reading through this, you might bookmark two publicly which explain (or at least
document) all of the various components of the STL. Those two URLS are:

• http://www.dinkumware.com/manuals/default.aspx
• http://www.sgi.com/tech/stl

The pair
The STL pair is nothing more than a template struct with two fields.

template <class U, class V>
struct pair {

U first;
V second;
pair(const U& first = U(), const V& second = V()) :

first(first), second(second) {}
};

template <class U, class Y>
pair<U, V> make_pair(const U& first, const V& second);

Notice that the pair is a struct rather than a class. When handling a pair, you’re
free to directly access the first and second fields, since there are no private access
modifiers in place to prevent you. (Had it been declared a class, the first and
second fields would have been private by default. We don’t need to encapsulate the
fields of a pair, because it’s hardly a secret what a pair really is.)

The details of the pair are trivial, but they deserve specific mention up front, because
many other STL classes depend on them. All of the associative containers (map,
hash_map, and multimap) require a pair be used to insert new data.

map<string, int> portfolio;

portfolio.insert(make_pair(string("LU"), 400));
portfolio.insert(make_pair(string("AAPL"), 80));
portfolio.insert(make_pair(string("GOOG"), 6500));

The calls to insert do what you’d expect. After the third insertion, our stock portfolio
consists of 400 shares of Lucent stock, 80 shares of Apple stock, and 6500 shares of
Google. We’ll talk more about the map in a few paragraphs. The point here is that the
pair comes up at least as often as the map does.

2

The vector
The vector is a type-safe, sequential container class that behaves like an array. You can
set the size of the vector up front, you can use operator[] to access and modify
individual entries, and you can splice new elements in anywhere you want and let the
vector do all of the shifting for you. The primary win of the vector over the array
comes from its ability to grow and shrink automatically in response to insertion and
deletion. Because arrays are useful data structures all by themselves, and because
vectors are designed to not only behave like arrays but to interact with the
programmer using the same syntax, vectors are used more often than any other STL
class.

Programs making use of the vector first need to #include some boilerplate at the top
of any file making use of it:

#include <vector>
using namespace std;

The most commonly used vector operations are summarized in the abbreviated class
definition presented here:

template <class T>
class vector {

public:
vector();
vector(const vector<T>& originalMap);

typedef implementation_specific_class_1 iterator;
typedef implementation_specific_class_2 const_iterator;

bool empty() const; // true iff logical length is 0
long size() const; // returns logical length of vector
void clear(); // empties the vector, sets size to 0

void push_back(const T& elem);
void pop_back();

T& operator[](int i);
const T& operator[](int i) const;
iterator insert(iterator where, const T& elem);
iterator erase(iterator where);

iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

};

Here’s a simple function that populates an empty vector with the lines of a file:

static void readFile(ifstream& infile, vector<string>& lines)

3

{
assert(lines.size() == 0); // assert aborts program if test fails
assert(infile.good()); // verify ifstream refers to legit file

string line;
while (ifstream.peek() != EOF) {

getline(ifstream, line); // reassign line to be next line of file
lines.push_back(line); // append

}

cout << "All done! (Number of lines: " << lines.size() << ")" << endl;
}

push_back tacks something new to the end of the vector. Whenever the argument to
push_back is a direct object (as opposed to a pointer), the vector makes a deep,
independent copy of that object. One can append pointers as well, but expect the pointer
and nothing more to be replicated behind the scenes; any memory referenced by that
pointer will be referenced from within the vector as well.

Traversing the vector’s elements is trivial. You iterate over the vector using the same
semantics normally used to traverse traditional arrays.

vector<double> transactionAmounts;
// initialization code omitted

double totalSales = 0.0;
for (int i = 0; i < transactionAmounts.size(); i++)

totalSales += transactionAmounts[i];

While it may not be obvious, operator[] is called repeatedly, each call returning some
dollar and cent amount to be added to the running total.

The vector specification exports begin and end methods—routines producing start the
past-the-end iterators. Iterators behave like pointers—in fact, they are often defined to
be actual pointers when the encapsulated elements really are laid out sequentially in
memory. The STL’s intent is to provide an iterator with each and every container type it
defines, making it the responsibility of the iterator to mimic the behavior of true
pointers while providing sequential access to all contained elements.

Some programmers prefer the iterator over the traditional array-indexing idea, even
when using the vector.

vector<double> transactionAmounts;
// initialization code omitted

double totalSales = 0.0;
vector<double>::const_iterator curr = transactionAmounts.begin();
vector<double>::const_iterator end = transactionAmouts.end();
for (; curr != end; ++curr)

totalSales += *curr;

4

A more interesting example:

struct flight {
char flightNum[8]; // embedded C-string, e.g "USA177"
string origin; // leaving San Francisco
string destination; // arriving Puerto Vallarta
short firstClass; // number of passengers flying first class
short coach; // number of passengers flying coach

};

Pretend that USAirways needs to cancel any and all undersold flights. Functionality
designed to filter a vector of flight records to remove such flights might look like this:

void cancelLowCapacityFlights(vector<flight>& flights, int minPassengers)
{

vector<flight>::iterator curr = flights.begin();
while (curr != flights.end()) {

if (curr->firstClass + curr->coach < minPassengers)
curr = flights.erase(curr);

else
++curr;

}
}

Each iteration inspects a flight, and in the process decides whether or not to cancel.
When the capacity requirement is met, our job is easy: we leave the flight alone and
advance the iterator to the next flight in the sequence. Otherwise, we rely on erase to
splice out the flight addressed by curr. Changes to a vector—and you certainly get
changes when you erase an element—invalidate all iterators. The vector should have
the flexibility to resize, compact, and/or relocate memory behind the scenes (and you
know what types of things might happen behind the abstraction wall, so you shouldn’t
be surprised.). As a result, previously generated iterators could reference meaningless
data. erase supplies a new iterator identifying the element that would have been next
had we not changed anything. In this case there’s no reason to manually advance the
iterator, since erase effectively does that for us.

If you understand why each call to erase necessarily invalidates existing iterators, then
you’ll also understand why the flights.end() resides within the test of the while
loop, thereby requiring it to be called with every iteration.

5

The map
The map is the STL’s generic symbol table, and it allows you to specify the data type for
both the key and the value. The boilerplate required to use the STL map is:

#include <map>
using namespace std;

The most commonly used map constructors and methods are summarized here:

template <class Key, class Value>
class map {

public:
map();
map(const map<Key, Value>& originalMap);

// typedefs for iterator and const_iterator

pair<iterator, bool> insert(const pair<Key, Value>& newEntry);
iterator find(const Key& key);
const_iterator find(const Key& key) const;

Value& operator[](const Key& key);

iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

};

While there are more methods that those listed above—many more, in fact—these
operations are the most common. For the full story, you should search either of the two
web sites mentioned on page one.

Let’s build a map of some of my favorite chords. I’ll start out small.

typedef map<string, vector<string> > chordMap;
chordMap jazzChords;

vector<string> cmajor;
cmajor.push_back("C");
cmajor.push_back("E");
cmajor.push_back("G");

pair<chordMap::iterator, bool> result =
jazzChords.insert(make_pair(string("C Major"), cmajor));

The insert method is stubborn, because it doesn’t permit existing keys to be
reassigned to new values—that is, had "C major" been previously inserted, insert
would leave the original entry intact and report the fact that no changes were made back
to the client via the returned pair. This isn’t a limitation of the map, as there are other

6

ways to erase and/or otherwise modify an existing key-value pair. insert just isn’t
one of them.

The return value (which is often ignored if we know the key isn’t in the map prior to the
insert call) returns a pair. The second field of the return value reports whether or
not the key is already bound to some other value; true means that the insertion really
did something—that the key is new to the map, the insertion really modified the
structure, and that the insertion increased the key count by one. false means that the
key is already present and that no changes were made. The first field of the pair
stores an iterator addressing the pair stored inside the map on behalf of the key.
Regardless of whether insert added the key or not, we’re guaranteed to have some
key-value pair after the call.

Code to examine the result of the insert call could be used as follows:

pair<chordMap::iterator, bool> result =
jazzChords.insert(make_pair(string("C Major"), cmajor));

if (result.second)
cout << "\" << result.first->first << "\" was successfully inserted." << endl;

else
cout << "\" << result.first->first << "\" already present." << endl;

If you know there’s zero chance the key was already in there, you could ignore the
return value and proceed without checking it. If nothing else, however, you might
include a test asserting that the insertion was successful:

pair<chordMap::iterator, bool> result =
jazzChords.insert(string("C Major"), cmajor);

if (!result.second) {
cerr << "ERROR: \" << result.first->first << "\" already present!";
cerr << end;
exit(1);

}

The find method isn’t quite as complicated. There are really three overloaded versions
of find, but I’m commenting only on the one I expect you’ll be using, at least for CS107
purposes. Curious minds are welcome to cruise the dinkumware to read up on the full
suite of find operations.

If you’re not sure whether or not some key of interest resides within your map, but you
need to know, then find is the method for you. You wake up in the middle of the
night, sweating, panicky, and nauseous because you forget how to play an F# minor 11
chord, but you calm down once you remember that find can tell you anything about
any chord ever invented.

7

chordMap::const_iterator found = jazzChords.find("F# minor 11");1

if (found == jazzChords.end())
cout << "Chord was never recorded." << endl;

else {
cout << "Notes of the " << found->first << " chord:" << endl;
for (vector<string>::const_iterator note = found->second.begin();

 note != found->second.end(); ++note)
cout << "\t" << *note << endl;

}

The nature of the find call itself shouldn’t surprise you. The comparison of the return
value to jazzChords.end() might. We’re used to sentinel values of NULL and –1, but
the STL has each instance of each container define its own sentinel value, and that value
is categorically reported by the container’s end method. The check against end()
should generally be made—particularly if you’re not sure the key is even present.

Finally, the operator[] method allows programmer to access and even update a map
using array-like semantics. The portfolio example you saw earlier:

map<string, int> portfolio;

portfolio.insert(make_pair(string("LU"), 400));
portfolio.insert(make_pair(string("AAPL"), 80));
portfolio.insert(make_pair(string("GOOG"), 6500));

could be rewritten to make use of operator[] instead:

map<string, int> portfolio;

portfolio["LU"] = 400;
portfolio["AAPL"] = 80;
portfolio["GOOG"] = 6500;

You’ll notice from the prototype for operator[] returns a Value&; in a nutshell, it
returns an automatically dereferenced pointer (we know such things as references) into
the space within a map that stores a value of some key-value pair. The beauty here is
that operator[] allows us to update an existing value to something new—something
the insert operation doesn’t allow. The purchase of 300 additional shares of Lucent
could be encoded by the following:

portfolio["LU"] += 300;

What’s important to understand here is that the += doesn’t act on myStockPortfolio,
but rather on the int& returned by operator[].

1 Because jazzChords is non-const, the non-const version of find will always be called. We expect
an iterator, not a const_iterator, to be returned. However, found doesn’t require anything but
read access to the map entry iterator produce by find, so in the interest of safety and good style, we
declare found to be a const_iterator.

8

Incidentally…
All large data structures—whether they come in the form of a record, a client-defined
class, or an STL container—should typically be passed around either by address or by
reference. C++ purists tend to pass large structures around by reference, because to
pass a structure around by value is to invoke its copy constructor: the constructor that
understands how to initialize an object to be a clone on an existing one. Passing around
by address also avoids the copy, but those passing by reference enjoy the convenience
of direct object semantics (. is prettier than * and ->). In general, properly defined copy
constructors take a noticeable amount of time to run, and improperly implemented ones
can unintentionally share information (via embedded pointers, for example) between
the original and the copy.

Iterating Over The Map
A function designed to sell half of any stock you feel you own too much of might be
implemented this way:

void sellStocks(map<string, int>& stocks, int threshold)
{

map<string, int>::iterator curr = stocks.begin();
while (curr != stocks.end()) {

if (curr->second >= threshold) curr->second /= 2;
++curr;

}
}

A function that counts the total number of shares you own would need to traverse the
entirety of the map in a similar way.

int countStocks(const map<string, int>& stocks)
{

int stockCount = 0;
map<string, int>::const_iterator curr = stocks.begin();
while (curr != stocks.end()) {

stockCount += curr->second;
++curr;

}
return stockCount;

}

Notice that this last function only requires const access to the map. Therefore, the
reference passed is marked as const, and the local iterators used to examine the
collection of stock items are of type const_iterator. Notice that a const_iterator
itself isn’t frozen—it responds to operator++ just fine. A const_iterator merely
respect the constness of whatever it’s addressing.

