NAME:	• • • • • • • • • • • • • • • • • • • •		 	•••••
NAME:	• • • • • • • • • • • • • • • • • • • •	•••••	 ••••••••••••••••	•••••

1

STUDENT NUMBER:

Question 1, State Space and Heuristics, (10 marks)

In the context of the 8-puzzle problem give a description and a data structure for the following:

- i) State space representation.
- ii) Legal move representation.

Solution

i) We could represent any state of the 8-puzzle by a permutation of the nine integers, [0, 1, 2, 3, 4, 5, 6, 7, 8]. The position of the 0 integer in the permutation indicates the open slot in the puzzle.

For example: The start and goal states

2	8	3	1	2	3
1	6	4	8		4
7		5	7	6	5

could be represented by the permutations

[2, 8, 3, 1, 6, 4, 7, 0, 5] and [1, 2, 3, 8, 0, 4, 7, 6, 5]

Full *state space* is then the tree of reachable states starting from the initial state and with each state connected by a legal move. It is not necessary to store the full state space in order to solve the 8-puzzle, it is only necessary to search state space for the goal state.

ii) A move for the 8-puzzle is represented by moving the empty slot in one of 4 directions, [U, D, L, R], The move is legal if the direction selected does not move the empty slot off the 3x3 grid.

Question 2, Search Algorithms, (10 marks)

Using *Best First Search*, construct an A^* algorithm for the *8-puzzle* problem and explain why your algorithm is indeed A^* .

Solution

```
def bestfs(start,goal)
   open = [start],
   close = [],
    State = failure;
    while (open <> []) AND (State <> success) begin
        remove the leftmost state from open, call it X;
        if X is the goal, then
            State = success
        else begin
            generate children of X;
            for each child of X
              do case
                the child is not on open or closed
                    assign the child a heuristic value,
                    add the child to open,
                the child is already on open
                    if the child was reached by a shorter path then
                        give the state on open the shorter path
                the child is already on closed:
                    if the child is reached by a shorter path then
                        remove the state from closed and add the child to open;
              endcase
            endfor
            put X on closed;
        end;
        re-order states on open by (path_length_so_far + heuristic) merit (best leftmost);
    endwhile;
    return State;
end.
def heuristic(state, goal)
    return(number_tiles_out_of_place(state,goal))
end.
```

This algorithm is A^* because the next state searched has minimum path-length-so-far + heuristic from here-to-goal and the heuristic under-estimates the actual number of moves required to take the current state to the goal state.

Question 3, Game Playing, (10 marks)

Consider Grundy's two player version of **NIM** starting with **8-counters** in one pile.

- a) Draw the full game tree.
- b) Use the **minimax** search algorithm to show that **max** can always win if he plays first.

Solution

See notes.....

5

Question 4, Prolog, (10 marks)

Consider the following first verse of a well-known hillbilly poem by Moe Jaffe:

Many many years ago, when I was twenty-three, I married the widow, *Hoe*, as pretty as can be, The widow had a grown-up daughter, *Roe*, with hair of red, My father, *Poe*, fell for her and soon the two were wed.

- a) Construct Prolog predicates to capture the relationships in the poem.
- b) Construct a grandfather predicate in the loose sense that allows for step-relationships.
- c) Explain how you would use your grandfather predicate to prove that *Moe* was now his own grandfather.

Solution

```
male(moe).
male(poe).
female(hoe).
female(roe).
spouse(moe, hoe).
spouse(hoe, moe).
spouse(poe, roe).
spouse(roe, poe).
parent (moe, poe).
parent (roe, hoe) .
stepParent(X,Y) :-
        parent(X,W),
        spouse(W,Y).
grandfather(X,Y) :-
        male(Y),
        (parent(X,W);stepParent(X,W)),
        (parent(W,Y);stepParent(W,Y)).
```

Question 5, Logic, (10 marks)

Convert the following statements into WFFs.

1) Animals, that do not kick, are always unexcitable

- 2) Donkeys have no horns
- 3) A buffalo can always toss one over a gate
- 4) No animals that kick are easy to swallow
- 5) No hornless animal can toss one over a gate
- 6) All animals are excitable, except buffalo

and the use resolution to show that

Donkeys are not easy to swallow.

Solution

	1)	$\forall x :\sim kicker(x) \rightarrow \sim excitable(x)$	$kicker(a_1) \lor \sim excitable(a_1)$
	2)	$\forall x: donkey(x) \rightarrow \sim horned(x)$	$\sim donkey(a_2) \lor \sim horned(a_2)$
	3)	$\forall x: buffalo(x) \rightarrow tosser(x)$	$\sim buffalo(a_3) \lor tosser(a_3)$
	4)	$\forall x: kicker(x) \rightarrow \sim swallow(x)$	$\sim kicker(a_4) \lor \sim swallow(a_4)$
	5)	$\forall x :\sim horned(x) \rightarrow \sim tosser(x)$	$horned(a_5) \lor \sim tosser(a_5)$
	6)	$\forall x: excitable(x) \rightarrow \sim buffalo(x)$	$\sim excitable(a_6) \lor \sim buffalo(a_6)$
	7)	$\forall x:\sim buffalo(x) \rightarrow excitable(x)$	$buffalo(a_7) \lor excitable(a_7)$
		negate the goal	
	8)	$\sim (\forall x : donkey(x) \rightarrow \sim swallow(x))$	donkey(a)
		$(\forall x : uonneg(x) \rightarrow \forall swarrow(x))$	0(1)
)		swarrow(a)
		resolution	
	10)	8 and 2	$\sim horned(a)$
l	11)	10 and 5	$\sim tosser(a)$
	12)	11 and 3	$\sim buffalo(a)$
	13)	12 and 7	excitable(a)
	14)	9 and 4	$\sim kicker(a)$
l	15)	14 and 1	$\sim excitable(a)$
	16)	15 and 13	FALSE
	11) 12) 13) 14) 15)	8 and 2 10 and 5 11 and 3 12 and 7 9 and 4 14 and 1	$\sim buffalo(a) \\ excitable(a) \\ \sim kicker(a) \\ \sim excitable(a)$

Attachments

Summary of first order logic algebra:

$$A \to B \equiv (\sim A) \lor B$$

$$\sim (\sim A) \equiv A$$

$$\sim (A \land B) \equiv (\sim A) \lor (\sim B)$$

$$\sim (A \lor B) \equiv (\sim A) \land (\sim B)$$

$$\sim (\forall x : P(x)) \equiv \exists x : \sim P(x)$$

$$\sim (\exists x : P(x)) \equiv \forall x : \sim P(x)$$