NAME:

STUDENT NUMBER:

Question 1, State Space and Heuristics, (10 marks)

In the context of the 8-puzzle problem give a description and a data structure for the following:
i) State space representation.
ii) Legal move representation.

Solution

i) We could represent any state of the 8 -puzzle by a permutation of the nine integers, $[0,1,2,3,4,5,6,7,8]$. The position of the 0 integer in the permutation indicates the open slot in the puzzle.
For example: The start and goal states

2	8	3
1	6	4
7		5

1	2	3
8		4
7	6	5

could be represented by the permutations
$[2,8,3,1,6,4,7,0,5]$ and $[1,2,3,8,0,4,7,6,5]$
Full state space is then the tree of reachable states starting from the initial state and with each state connected by a legal move. It is not necessary to store the full state space in order to solve the 8-puzzle, it is only necessary to search state space for the goal state.
ii) A move for the 8-puzzle is represented by moving the empty slot in one of 4 directions, $[\mathrm{U}, \mathrm{D}, \mathrm{L}, \mathrm{R}]$, The move is legal if the direction selected does not move the empty slot off the 3×3 grid.

Question 2, Search Algorithms, (10 marks)

Using Best First Search, construct an A^{*} algorithm for the 8-puzzle problem and explain why your algorithm is indeed A^{*}.

Solution

```
def bestfs(start,goal)
    open = [start],
    close = [],
    State = failure;
    while (open <> []) AND (State <> success) begin
        remove the leftmost state from open, call it X;
        if X is the goal, then
            State = success
        else begin
            generate children of X;
            for each child of X
                do case
                        the child is not on open or closed
                            assign the child a heuristic value,
                            add the child to open,
                    the child is already on open
                    if the child was reached by a shorter path then
                                give the state on open the shorter path
                    the child is already on closed:
                    if the child is reached by a shorter path then
                        remove the state from closed and add the child to open;
                endcase
            endfor
            put X on closed;
        end;
        re-order states on open by (path_length_so_far + heuristic) merit (best leftmost);
    endwhile;
    return State;
end.
def heuristic(state,goal)
    return(number_tiles_out_of_place(state,goal))
end.
```

This algorithm is A^{*} because the next state searched has minimum path-length-so-far + heuristic from here-to-goal and the heuristic under-estimates the actual number of moves required to take the current state to the goal state.

Question 3, Game Playing, (10 marks)

Consider Grundy's two player version of NIM starting with 8 -counters in one pile.
a) Draw the full game tree.
b) Use the minimax search algorithm to show that max can always win if he plays first.

Solution

See notes......

Question 4, Prolog, (10 marks)

Consider the following first verse of a well-known hillbilly poem by Moe Jaffe:
Many many years ago, when I was twenty-three, I married the widow, Hoe, as pretty as can be,
The widow had a grown-up daughter, Roe, with hair of red, My father, Poe, fell for her and soon the two were wed.
a) Construct Prolog predicates to capture the relationships in the poem.
b) Construct a grandfather predicate in the loose sense that allows for step-relationships.
c) Explain how you would use your grandfather predicate to prove that Moe was now his own grandfather.

Solution

```
male(moe).
male(poe).
female(hoe).
female(roe).
spouse(moe, hoe).
spouse (hoe,moe).
spouse (poe,roe).
spouse (roe,poe).
parent(moe,poe).
parent(roe,hoe).
stepParent(X,Y) :-
    parent (X,W),
    spouse(W,Y).
grandfather(X,Y) :-
    male(Y),
    (parent (X,W); stepParent (X,W)),
    (parent(W,Y); stepParent (W,Y)).
```


Question 5, Logic, (10 marks)

Convert the following statements into WFFs.

1) Animals, that do not kick, are always unexcitable
2) Donkeys have no horns
3) A buffalo can always toss one over a gate
4) No animals that kick are easy to swallow
5) No hornless animal can toss one over a gate
6) All animals are excitable, except buffalo
and the use resolution to show that

Donkeys are not easy to swallow.

Solution

1)	$\forall x: \sim \operatorname{kicker}(x) \rightarrow \sim \operatorname{excitable}(x)$	kicker $\left(a_{1}\right) \vee \sim \operatorname{excitable}\left(a_{1}\right)$
2)	$\forall x: \operatorname{donkey}(x) \rightarrow \sim \operatorname{horned}(x)$	$\sim \operatorname{donkey}\left(a_{2}\right) \vee \sim \operatorname{horned}\left(a_{2}\right)$
3)	$\forall x: \operatorname{buffalo}(x) \rightarrow \operatorname{tosser}(x)$	$\sim \operatorname{buffalo}\left(a_{3}\right) \vee$ tosser $\left(a_{3}\right)$
4)	$\forall x: \operatorname{kicker}(x) \rightarrow \sim \operatorname{swallow}(x)$	$\sim \operatorname{kicker}\left(a_{4}\right) \vee \sim \operatorname{swallow}\left(a_{4}\right)$
5)	$\forall x: \sim \operatorname{horned}(x) \rightarrow \sim \operatorname{tosser}(x)$	horned ($\left.a_{5}\right) \vee \sim \operatorname{tosser}\left(a_{5}\right)$
6)	$\forall x: \operatorname{excitable}(x) \rightarrow \sim \operatorname{buffalo}(x)$	$\sim \operatorname{excitable}\left(a_{6}\right) \vee \sim \operatorname{buffalo}\left(a_{6}\right)$
7)	$\forall x: \sim \operatorname{buffalo}(x) \rightarrow$ excitable (x)	buffalo $\left(a_{7}\right) \vee$ excitable $\left(a_{7}\right)$
	negate the goal	
8)	$\sim(\forall x: \operatorname{donkey}(x) \rightarrow \sim \operatorname{swallow}(x))$	donkey(a)
9)		swallow(a)
	resolution	
10)	8 and 2	$\sim \operatorname{horned}(a)$
11)	10 and 5	$\sim \operatorname{tosser}(\mathrm{a})$
12)	11 and 3	\sim buffalo(a)
13)	12 and 7	excitable(a)
14)	9 and 4	$\sim \operatorname{kicker}(a)$
15)	14 and 1	\sim excitable (a)
16)	15 and 13	FALSE

Attachments

Summary of first order logic algebra:

$$
\begin{aligned}
& A \rightarrow B \equiv(\sim A) \vee B \\
& \sim(\sim A) \equiv A \\
& \sim(A \wedge B) \equiv(\sim A) \vee(\sim B) \\
& \sim(A \vee B) \equiv(\sim A) \wedge(\sim B) \\
& \sim(\forall x: P(x)) \equiv \exists x: \sim P(x) \\
& \sim(\exists x: P(x)) \equiv \forall x: \sim P(x)
\end{aligned}
$$

